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ABSTRACT
The Statecharts formalism has been proven useful for the modeling
of complex reactive systems. However, the formalism has no single,
precise semantics. Different Statechart tools and standards have
made their own (incompatible) semantic decisions. Rather than
proposing a new semantics for Statecharts, we present an implemen-
tation of a Statecharts interpreter and compiler with configurable
semantic variability. Its semantic feature model is based on the
existing framework of Big-Step Modeling Languages (BSMLs), and
consists of six (mostly) orthogonal dimensions of semantic options,
captured in a feature model. We provide an in-depth description of
our implementation of the “Priority” semantic dimension, which
differs slightly from what BSML prescribes. The feature model also
consists of a small set of constraints that prune non-uniquely be-
having semantic variants. These constraints were discovered with
a novel technique, that we also explain.
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1 INTRODUCTION
Statecharts are a language for modeling complex, reactive, au-
tonomous/timed and concurrent systems, at a discrete-event level
of abstraction, using an intuitive visual notation. When originally
introduced by Harel in 1987 [8], no complete or formal semantics
were given. In literature, many proposals were made for a formal
semantics, each with their strengths and weaknesses. As a result,
no single semantics has “won”. Meanwhile, implementations (e.g.,
Statemate, Rhapsody, ROOM, YAKINDU) have made their own,
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often incompatible, semantic choices. A number of standards have
also emerged (e.g., UML State Diagrams, SCXML).

An overview of Statecharts variants was first made by von der
Beeck in [13], listing 16 semantic and 10 syntactic variation points.
The author also suggested a new variant (without implementation)
with themost “desirable” choice for each of the variation points. The
variation points were not orthogonal: for instance, “determinism”
and “priorities” are variation points, while the former is a language
property, influenced by the latter, which is a semantic feature.

More recently, Esmaeilsabzali et al. presented 8 dimensions of
semantic features of Statechart-like languages called “Big-StepMod-
eling Languages” (BSMLs) in [5]. These dimensions are (mostly)
orthogonal, meaning that the choices made for each of them min-
imally impact each other. In this work, no new “optimal” variant
is introduced — the authors instead reason that language features
should be chosen that are “most fit” for the problem at hand, on a
per-model basis. The work did not include an implementation, and
the semantic options were explained in natural language, comple-
mented with examples.

1.1 Contribution
In this paper, we present an implementation of a subset of the
BSML framework in the form of a Statechart interpreter + compiler
with semantic variability, as part of the SCCD project (StateCharts
+ Class Diagrams, a hybrid language of dynamically created and
destroyed Statechart instances, communicating asynchronously
[12]). Motivations are:

• Allowing the modeler to select semantic features on a per-
model basis.

• Claiming compatibility with existing tools (by mimicking
their semantics).

• Seeingwhether the BSML framework is indeed implementable.

While the chosen subset of BSML features has been mostly im-
plemented as-is, we motivate a slight deviation in the Priority
dimension, calculating priorities and detecting non-determinism
statically.

Finally, we present a novel approach for discovering additional
constraints on our semantic feature model to prune “duplicated”
variants, i.e., variants that behave exactly the same as other variants.

The remainder of this paper is structured as follows: Section 2
presents the semantic dimensions and their options, as supported
in our implementation. It also motivates some deviations from the
BSML framework, and explains which BSML features were not im-
plemented. Section 3 gives a brief overview of our implementation.
Section 4 explains how we identified the subset of semantically
unique variants among those executable by our implementation.
Section 5 discusses related work, and Section 6 concludes this paper.
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2 SEMANTIC FEATURES
In this section, we’ll first explain the semantic variability options
supported by our implementation. Then, we’ll explain some small
deviations that we made from BSML. Finally, we’ll mention (and
partially motivate) the features from BSML that have not been
implemented.

2.1 BSML Basics
Our feature model is largely a subset of the BSML framework [4, 5].
The execution of a BSML happens as a sequence of big-steps. A
big-step is a reaction to a set of (simultaneous) input events. Big-
steps have a run-to-completion (RTC) characteristic: another input
cannot be received until the current reaction has completed. This
reaction consists of (1) possibly, a change of the internal configu-
ration (by executing transitions), and (2) a (possibly empty) set of
output events (generated by the executed transitions). A big-step
consists of a sequence of combo-steps, which in turn consists of a
set of small-steps. Combo-steps have no meaning on their own —
they are given meaning by certain semantic options. For now, one
may assume a small-step consists of the execution of one transition.

The semantic options described by the BSML framework only
impact the execution of a big-step. BSML does not describe Stat-
echart features such as queuing of input events, history or timed
transitions.

2.2 Semantic Dimensions
We’ll now explain the semantic dimensions and their respective
options, supported by our implementation. The full feature model
is shown in Fig. 1. We follow the convention from [5], using Small
Caps for semantic options, and Sans-serif for semantic dimensions.
The dimensions are:

2.2.1 Big-/Combo-Step Maximality. constrains the transitions that
can be taken in a big-step, or combo-step, respectively. Options
are Take Many (no constraints — a big-step ends when no more
transitions are enabled), Take One (only allow transitions that are
orthogonal to each other to be taken within the same big step), and
Syntactic (same as Take One, but transitions to states syntacti-
cally marked as unstable do not “count”, and allow for subsequent
transitions within the same step).

Note that for any step in any Statechart model, we can order the
maximality-options by the number of transitions included in that
step: Take Many ≥ Syntactic ≥ Take One.

Note that the maximality of a combo-step by itself has no mean-
ing — instead, combo-steps are given meaning when other options
from other semantic dimensions refer to them, as we will now see.

2.2.2 Input/Internal Event Lifeline. specifies at what point, and
for how long, during a big-step, input and internal events become
and remain active (such that they can enable transitions). An input
event can either be Present in First Small-Step, Present in First
Combo-Step or Present in Whole (present in the entire big-step).
Similarly, an internal event can be Present in Next Small-Step
(to trigger one immediately subsequent transition), Present in
Next Combo-Step or Present in Remainder (the event remains
active throughout the remainder of the big-step).

By using Present in First Combo-Step and Present in Next
Combo-Step, reactions to input events can be separated from reac-
tions to internal events. This is probably the most common usage
of combo-steps.

2.2.3 Memory Protocol. controls the “versions” of the values of
variables that are read, for evaluating guard conditions and variable
assignments. Options are Big-Step, Combo-Step and Small-Step,
meaning that values are read as they were at the beginning of the
current big-step, combo-step or small step, respectively.

The Big-Step and Combo-Step options can be used to hide the
effects of transitions in orthogonal regions from each other. Never-
theless, transitions can still overwrite each other’s assignments, so
true composability cannot be achieved.

2.2.4 Priority. allows to define (partial) priority orderings on tran-
sitions. At run-time, when more than one enabled candidate transi-
tion can be executed next, the candidate with the highest priority
will be selected. If there is no single highest-priority candidate,
non-determinism occurs, and in principle, a candidate is chosen
randomly.

In Statecharts, two transitions can only be simultaneously en-
abled, if they either (a) have the same source state, (b) have orthog-
onal source states, or (c) have one source state that is an ancestor
of the other’s source state. This translates itself to complementary
priority options for same-state, orthogonal and hierarchical. For
the first two, we can either have priority None (no priority) or
Explicit priority (i.e., priority is syntactically given). For “hierar-
chical”, we can give higher priority to transitions whose source
state is higher up in the hierarchy with Source-Parent, or lower
down with Source-Child.

The options for the Priority dimension in our implementation
differ somewhat from the options in [5]. We will now motivate this.

2.3 Deviations from BSML
2.3.1 Priority and Order of Small-Steps. Besides Priority, BSML
also has a dimension Order of Small-Steps, that determines the
order in which transitions that do not disable each other are ex-
ecuted. In our opinion, this is just a matter of selecting the next
candidate transition, which is the territory of Priority. Therefore, in
our implementation, Order of small-steps became the orthogonal
sub-dimension of Priority.

We have implemented Priority as follows: Based on the chosen
priority options, a directed graph is statically built, whose nodes
are transitions, and whose edges mean “has higher priority than”,
which is a transitive relation. An example of such a graph is shown
in Fig. 2. Next, this graph is checked for cycles (when a cycle is
found, the program terminates with an error), and subsequently
it is checked if any pair of transitions of equal priority can be
simultaneously enabled, based on whether their source states are
orthogonal to each other, or ancestors of one another. If this is
the case, we have detected a possible case of non-determinism,
and present an error message to the user. If this is not the case
(i.e., the model is guaranteed to be deterministic), a total ordering
is constructed, consistent with the partial priority ordering, and
stored in a list. Then, at run-time, this list is used to always quickly
find the highest-priority enabled transition.
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Figure 2: Priorities between transitions: Example Statechart (left) and its priority graphs (right)

2.3.2 Negated Event Triggers. In BSML, a complementary way of
expressing priorities between transitions exists, called negated event
triggers. For instance, in the case where a transition 𝑡1 is enabled by
event 𝑎, and 𝑡2 is enabled by event 𝑏, in the situation where both
𝑎 and 𝑏 are active, 𝑡1 can be given a lower priority by altering its
trigger to 𝑎 ∧¬𝑏, indicating that 𝑡1 is not enabled whenever 𝑏 is. In
the early Statechart days, negated event triggers were considered
the main mechanism for defining priorities [11].

Our implementation supports negated event triggers, but we
consider it not a priority mechanism. Instead, it is a mechanism for
restricting the transitions that can be simultaneously enabled.

When our priority graph is being checked for non-determinism,
currently, only the source state of transitions is taken into account
to detect whether two transitions can be simultaneously enabled.
This could be relaxed (and still only let deterministic models pass)
to also take into account negated event triggers: it can be statically

guaranteed that two transitions 𝑡1 : 𝑎 ∧ ¬𝑏 and 𝑡2 : 𝑏 can never be
simultaneously enabled.

2.3.3 Enabledness and Assignment Memory protocol. BSML distin-
guishes between Enabledness Memory Protocol and Assignment
Memory Protocol. The former specifies what version of variables
to read when evaluating guard conditions, and the latter speci-
fies what version of variables to read when evaluating variable
assignments. While our implementation does support these two
dimensions, in the context of this paper, we consider them a single
Memory Protocol dimension, because we are unaware of any use
case for using separate options for each.

2.4 Non-included BSML Features
The following semantic features from BSML were not implemented:

2.4.1 Concurrency. allows multiple transitions to be taken in the
same small-step, given that these transitions are commutative (i.e.,
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the order in which they are executed does not matter). A small-step
then becomes an unordered set of transitions. No priority needs to
be defined between transitions that execute concurrently. The main
difficulty is guaranteeing that transitions are indeed commutative.
While [5] only takes the source and target states of transitions into
account to determine commutativity, we believe that reads and
writes on internal variables must also be considered. This could be
done with concurrency analysis [3], a static analysis technique for
finding possible race conditions. We consider this feature future
work.

2.4.2 Dataflow. is a semantic option of the Priority-orthogonal
dimension, that executes writes before reads, i.e., transitions that
write to a variable are given a higher priority than transitions
that read the same variable. Similar to Concurrency, static analysis
on action language fragments would be necessary to support this
feature. We consider this future work.

2.4.3 Non-causal Event Lifeline Options. For Internal Event Lifeline,
BSML defines two additional options: Present in Whole makes an
internal event active since the beginning of a big-step, which means
the event can be active even before it was raised. This can yield
non-causal behavior: A pair of transitions 𝑡1 : 𝑎/∧𝑏 (is triggered
by event 𝑎 and raises event 𝑏) and 𝑡2 : 𝑏/∧𝑎 can trigger each other.
Some Statecharts variants allow this [10]. Because the execution
of such transitions is not traceable to an input event, it is called
non-causal. Due to its non-intuitiveness, this option was not imple-
mented. Present in Same makes an internal event active in the
same small-step, and therefore only makes sense in combination
with Concurrency enabled. This option can also cause non-causal
behavior, and was therefore not implemented.

2.4.4 Interface Variables / Events. as defined in BSML, are an addi-
tional way to compose different models together. We consider these
not a Statecharts feature, and consider input- and output-events
the only way of interacting with an environment, or possibly other
Statechart models.

2.4.5 Non-syntactical Input/Output Events. BSML has several op-
tions for distinguishing between input, internal and output events.
We always require explicit and syntactical distinction. We think
that such distinction does not impact the essence of Statechart
semantics.

3 IMPLEMENTATION
Our implementation was written in Python, and consists of a fron-
tend (a textual parser), and two backends: an interpreter and a
compiler (which generates Rust code). The only concrete syntax
currently supported is a dialect of SCXML.

The action language component was developed as part of this
project, but is nevertheless usable on its own: just like the Statechart
component, it has its own concrete syntax, its own interpreter and
its own (Rust) code generator. At each of these levels, the action
language is embedded into the Statechart language.

The Statchart language of course consists of an implementation
of BSML (i.e., big-step execution and semantic variability), but also
of Statechart features like timed transitions, history, (scaled) real-
time / as-fast-as-possible simulation, and queuing of input events.

Apart from BSML’s run-to-completion semantics, we also support
the synchrony hypothesis [2], meaning that computations happen
infinitely fast (in simulated time, that is). This makes it possible to
model timeouts that happen precisely on time.

To verify that our implementation of BSML is correct, we have
implemented the relevant examples from [5] as test cases. For an
in-depth technical reference, we refer to [6]. The implementation
can be found on our git server [7].

4 DISCOVERY OF UNIQUE VARIANTS
Our selection of implemented BSML features resulted in the feature
model shown in Fig. 1. This model has 1944 variants, and every
variant is executable, but not every variant has unique behavior:
For instance, if we choose Take Many for combo-steps and Take
One for big-steps, the combo-step still has to end when the big-step
ends, and therefore the behavior would be identical to choosing
Take One for combo-step maximality.

In order to come up with a set of constraints on our feature
model that rule out “duplicated” variants, duplicated variants were
detected in a “brute-force” manner: We created a Statechart model
that was supposed to behave uniquely for each semantic option. A
fragment of this model is shown in Fig. 3. Every semantic dimen-
sion is represented by one orthogonal region in the model. After
executing one big-step with input input0 from its initial configu-
ration, the model is supposed to tell us the option chosen for each
dimension, by ending up in a state with a label corresponding to
the right option. Our repository includes the full model and source
code for this experiment in the examples/semantics directory.

We have only considered those variants where Priority is ex-
plicitly defined at the orthogonal and same-state levels (ruling out
non-deterministic variants), which reduces the number of variants
from 1944 to 648. Then, for each of the 648 variants, we initialized
the model and ran one big-step, and detected 312 unique final con-
figurations. Finally, from observing the non-unique variants, we
manually constructed a small set of rules (coded in Python, our
implementation language) that prune the variants with non-unique
behavior. The rules are “explainable”, as follows:

• Combo-Step Maximality cannot be bigger than Big-Step
Maximality. This was already explained.

• If a non-maximality option refers to combo-steps (i.e., input
event lifeline is First Combo-Step, internal event lifeline
is Next Combo-Step or memory protocol is Combo-Step),
then big-step maximality must not be Take One: when this
is the case, a combo-step will always end at the same time
as a big-step, and hence, a combo-step has no distinctive
meaning. Any option referring to combo-steps can then be
rewritten to refer to the big-step. For instance, Present
in First Combo-Step behaves identically to Present in
Whole.

• If no non-maximality option refers to combo-steps, then
combo-step maximality must be Take One (i.e., the default
option). By only allowing one option for combo-step maxi-
mality here, this dimension does not create additional vari-
ants.
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4.1 Discussion
It seems that, apart from interactions between combo-steps and
other options referring to combo-steps, the implemented semantic
dimensions truly are orthogonal. This still does not mean that each
of the 312 unique variants is a good choice. Some thoughts:

• Probably some mechanism to limit the number of transitions
in a big-step is desirable: Using Take Many in combination
with Present in Whole or Present in Remainder could
result in ever-enabled transitions, and hence, never-ending
big-steps.

• For event lifeline, there is a strong intuitive coupling between
options for input and internal events. We can probably dis-
tinguish between two classes of semantics: one the one hand,
we have asynchronous, or “one event at a time” configura-
tions, such as:
– Present in First Small-Step + Present in Next Small-
Step
+ (big) Take One

– Present in First Combo-Step + Present inNextCombo-
Step
+ (combo) Take One + (big) Take Many

On the other hand, we have synchronous, or “all events
simultaneously” configurations, such as:
– Present inWhole + Present in Remainder + (big) Take
One

which may fit nicely with an “all transitions concurrently”
approach (i.e., concurrency semantics, which hasn’t yet been
implemented). These two classes should not be mixed up.
Restricting Input Event Lifeline and Internal Event Lifeline
to these three configurations, reduces the number of non-
duplicated variants further down to 74.

• For hierarchical priority, there is also the argument that
a higher priority should always be given to higher-level
transitions, because refining a state by adding sub-states (and
sub-transitions) to it should not alter the existing behavior
of that state.

5 RELATEDWORK
An implementation of a subset of BSML was also made by Luo et
al. [9], providing semantically configurable Statecharts within the
mbeddr [1] modeling environment. Compared to our implemen-
tation, it has additional support for Concurrency semantics, but
lacks support for combo-steps. Its implementation of Priority is
more restrictive than ours: While explicit priorities between same-
state transitions are supported, the compiler always falls back to
document-order (of transition declarations, in textual concrete syn-
tax) when no priority is given. While this guarantees determinism,
it is a redundant priority mechanism, when also supporting explicit
priority. Further, transitions are ordered by their priority at run-
time, as opposed to our implementation, which resolves priorities
statically, while detecting and rejecting non-deterministic models.

6 CONCLUSION
We have presented an implementation of a Statechart interpreter +
compiler with semantic variability. We have implemented a subset
of the BSML framework, mostly as-is, with only a few (motivated)
deviations in the Priority dimension. Once we had an implemen-
tation, we could detect unique semantic variants, which led to the
creation of simple rules to prune “duplicated” variants.

6.1 Future Work
For future work, we could further extend our implementation with
Concurrency and Dataflow semantics. We could also enhance
the static analyzer to detect if transitions can be concurrently en-
abled with respect to (negated) event triggers, in order to become
less strict about its requirement for explicit priorities, while still
guaranteeing determinism.
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