
Classification and Mapping of Layout Algorithms for Usage in
Graph-Like Modeling Languages

Gregor Wrobel
 Graph Based Engineering Systems

 Society for the Advancement of Applied Computer
Science

 Berlin, Germany
 wrobel@gfai.de

0000-0003-4234-0794

Robert Scheffler
 Graph Based Engineering Systems

 Society for the Advancement of Applied Computer
Science

 Berlin, Germany
 scheffler@gfai.de

0000-0002-3015-0099

ABSTRACT
Graph-like modeling languages (GLML) are important modeling
artifacts for software tools that are used in the environment of
software and systems engineering, digital twins, and domain-
specific modeling. Just as with textual languages, the concrete
syntax is the representation of the language elements intended for
humans and thus has a decisive influence on the
comprehensibility and usability of the language.

The concrete syntax of GLML is often defined less precisely or in
less detail when designing metamodels. While metamodels can be
designed independently or even without concrete syntax, the
latter is required for the actual usage of a graphical language. The
layout and the interaction support for editing the language
elements are commonly delegated to tool development. However,
the development of modeling tools focuses on functionality such
as model transformation and model execution, disregarding
usability and handling. Low user acceptance then leads to niche
applications and a limited number of users. The main reason for
the lack of support for laying out and editing the language
elements are complex integration challenges mainly concerning
the development or adaptation of suitable layout procedures for
GLML.

Some frameworks offer a remedy by providing layout procedures
for GLML. However, GLML differ from each other concerning
their concrete syntax. Even minor differences in the concrete
syntax of two languages can make the desirransferable or only
transferable through complex adaptations. Formal methods for
matching the concrete syntax of a GLML with existing layout
procedures as early as during the development of the language are
missing.

In this paper, we present a classification scheme for layout
procedures for GLML. The classification scheme is based on a
classification scheme we developed for the concrete syntax of
GLML, and it contains significant features. We define a mapping
procedure between the two classifiers. As a result, the mapping
decides whether a layout procedure can be used for a GLML. Both
the classification scheme and the process of mapping are
demonstrated in a real-world example of a technical graphical
domain-specific modeling language.

The presented approach supports the design of GLML and the tool
development for GLML. It can be an important step towards
automated tool development.

CCS CONCEPTS

• Computing methodologies~Modeling and simulation~Model
development and analysis~Modeling methodologies • Software
and its engineering~Software notations and tools~Formal
language definitions~Syntax • Human-centered
computing~Visualization~Visualization techniques~Graph
drawings

KEYWORDS
Graph-Like Modeling Languages, Concrete Syntax of Modeling
Languages, Layout-Algorithm Reuse, Designing and
Implementing Modeling Languages

1 Introduction
Increasing digitization and the requirements to develop and
master more and more complex systems have brought paradigms
and approaches such as Model-Driven Engineering (MDE) [1] and
Digital Twins [2] into the focus of research and industrial
application. Essential artifacts for this are models. As a
representation of systems throughout their life cycle, models are
the most important interface between man and machine. Thus,
models can facilitate the transition between informally sketched
requirements or drafts to implementations, or they are the basis
for simulations and optimizations. There are both textual and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the Owner/Author.
MODELS '22 Companion, October 23–28, 2022, Montreal, QC, Canada
© 2022 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-9467-3/22/10.
https://doi.org/10.1145/3550356.3561559

MODELS '22 Companion, October 23–28, 2022, Montreal, QC,
Canada

G. Wrobel et al.

graphical modeling languages, whereby the latter can have their
particular strength in a clear representation of the different model
elements and their interrelationships.

A considerable number of well-known graphical modeling
languages that are widely used in industrial applications (e.g.,
automotive, avionics, or telecommunications) exist. These include
standardized modeling languages such as UML [3], which can be
tailored to specific domains using the UML profile mechanism,
resulting in languages such as SysML [4] or MARTE [5]. In
addition to UML-based languages, there are varieties of dedicated
modeling languages with a narrower scope. Prominent examples
of this are BPMN [6] and Matlab/Simulink [7]. These languages,
also called General-Purpose Modeling Languages (GPML), have
some general domain references (e.g., UML for modeling the
structure and behavior of object-oriented software,
Matlab/Simulink for simulation models), but they are also used for
other specific domains. Their universality implies that their
language constructs are not very specifically targeted to a
particular domain. It is even the case that the concrete syntax of
GPML is loosely defined [8]. This is also reflected in the users of
these languages. Either they are (software) developers who are
familiar with abstract language constructs through programming
languages, or the users come from an academic environment and
have familiarized themselves with a GPML for their academic
work. The missing or weak definition of the concrete syntax even
allows this user group freedom in the use of the language.

Another class of languages has a stronger concrete domain
reference. Users of these domain-specific languages (DSL) are
domain experts who often have less experience with abstract
languages. In order to enable proper use of these languages, many
of them have a more detailed description of their concrete syntax.
There are some very old, widely used languages that are still in
use, such as circuit diagrams for the representation of electrical
circuits [9, 10]. Their concrete syntax, but also aesthetic criteria,
as proclaimed in the field of graph drawing [11], and layout
requirements are partly specified in great detail using standards.1
On the one hand, this makes tool development easier; and on the
other hand, it makes it easier for users to learn and master the
language. Adherence to the standard means that once learned, it
can be used repeatedly, and models can be exchanged. Such
languages can justifiably be called successful because they have
been used for decades.

In more recent language development, the human-centric
aspects are less in focus. Model executability and model
transformations are the core of MDE [12], and the abstract syntax
definition of languages is the focus of language engineering.

According to our experience from the development of GLML
for different application domains in engineering,2 human factors

1 For example: “Lines between symbols should be horizontal or vertical with a
minimum of line crossings, and with spacing to avoid crowding“ [9].
2 For example, flowchart diagrams for energy system engineering [13, 14] or
parameter maps for parametric 3D-CAD models [15].
3 In [8], graphical modeling languages for technical systems are explicitly the subject
of consideration. The authors do not want to exclude a generalization to graphical
modeling in general at this point, but they do not want to proclaim it either.
4 The placement of vertices and routing of edges is what is called layout in this paper.

are one, if not the decisive, criterion for the successful
establishment of a graphical modeling system (for technical
systems) [8].3 The central hypothesis stated in [8] is that the
layout of GLML is the most important criterion for understanding,
creating, and editing models. All three use cases are of great
importance in the engineering process for technical systems. A
modeling process starts with a blank sheet (creating). Through
user interactions, the model grows; and, as it grows, it requires
changes in the placement of vertices and the routing of
connections4 of a GLML. The models are not built all at once or
by just one user. Thus, the model must also be understandable
(understanding) and changeable (editing). Making each
interaction efficient and effective to use requires good layout
procedures that place vertices and route connections, ideally
taking into account the users' mental map [16, 17].

A special field of graph theory deals with the placement of
vertices and the routing of edges: graph drawing [18]. In the last
decades, many algorithms for placing vertices (grid, trees, layered,
series-parallel, organic, circular, etc.) and routing networks
(straight lines, rectilinear lines, busses and channels, polylines,
arcs, etc.) were developed there. In addition, special types of
graphs were studied (port graphs, hypergraphs, nested graphs,
labeled graphs), and algorithms for them were developed. So why
not simply include the many layout methods of graph drawing in
language engineering and integrate them into the tools?

From our point of view, there are two main reasons for this.
1. The classical graph model consisting of vertices and

edges is not well suited as a metamodel for GLML, and
2. in language engineering, it is not clear which layout

methods are suitable for the concrete syntax of a
language. There are so many different types of graph
models or graph-like metamodels and very many layout
methods tailored for these models.

The first reason is mainly based on the fact that the vertices of
GLML are not dimensionless vertices to which edges can be
connected anywhere. In GLML, the vertices are two-dimensional
objects, and their connection points often have semantics5. The
concrete syntax of these connection points, e.g., whether they can
be moved or exchanged, have an enormous impact on routing
algorithms, for example, when it comes to minimizing
intersections.

These aspects are already incorporated into the metamodels of
some modeling frameworks. A number of models [19–22]
distinguish between the core elements vertex, edge, and port.

This paper is dedicated to the second reason mentioned. We
present an approach that can make statements about whether a
layout procedure can be used structurally for a GLML as early as

5 For example, the connection points in UML activities are distinguished
(symbolically) in that for the object flow a square symbolizes the connection point,
but no symbol is used for the control flow. Another example are the connection
points at symbols in circuit diagrams, which have a physical representation as
connection points of cables and for which therefore a symbolic distinction is of
immense importance.

Classification and Mapping of Layout Algorithms for Usage in
Graph-Like Modeling Languages

MODELS '22 Companion, October 23–28, 2022, Montreal, QC,
Canada

during language engineering. The following questions are to be
answered by this approach:

1. Can a layout method related to the concrete syntax of a
graphical language be used for it?

2. Which layout algorithms are available for a GLML and
which are not?

3. And which layout algorithms are no longer available
because of a change in the concrete syntax of a GLML?6

To answer these questions, we present the following approach
in this paper:

We define a classification scheme for the concrete syntax of
GLML and a classification scheme for layout procedures. Both
schemes are feature-based (Section 3), based on the metamodel
core in Figure 1, and the features between the schemes correspond
with each other (Section 4). The second step is to define a mapping
between the two classifiers that can answer the questions
described above. The approach is applied (Section 6) to the
example described at the beginning (Section 2). The paper ends
with a Section on related work (Section 7) and a summary and
outlook (Section 8).

GLML

vertex edge

[1..*] [1..*]

port

[0..*]

Figure 1: GLML Core Elements

2 Example Application
In this Section, we motivate the classification of the concrete
syntax of GLML and the classification of layout procedures for
GLML, and we describe the requirement to a mapping between
the two classifiers using a real-world example.

6 This could have an influence on the definition of the concrete syntax of a language,
if alternatives are possible, and more suitable layout algorithms are available for
them.

The example in Figure 2 shows a process model for a body
construction plant of an automotive manufacturer. The model
describes how further components (part 1.2 to part 4.3) are
mounted to an initial component (part 1.1). The components are
joined together in joining steps, which are represented by the
larger vertices. A joining step contains a subgraph that describes
the type and sequence of joining processes (e.g., welding,
clinching) and that is to be displayed either expanded (joining step
3.1 and joining step 4.1) or unexpanded (joining step 2.1 and joining
step 5.1) in the editor. The placement of the vertices in the process
model reflects the semantics of the assembly. On the one hand,
the arrangement of the components symbolizes the passage of the
main component through the plant in the form of the horizontal
arrangement of the vertices. On the other hand, the arrangement
of the vertices at the top or bottom shows the mounting of their
respective parts to the right and left of the main part.7

When editing a process model, a typical interaction is moving
vertices in the graph. The act of moving vertices symbolizing
components (part in Figure 2) can be divided into two cases. In
case 1, the joining step that is to the right of vertex part 1.1, is not
expanded. In case 2, it is expanded. In the following, we look at
the two interactions and the expected layout result:

1. Moving part 1.3 above part 1.1:
The result should be a layout as in constellation part 4.2, part

4.3, and joining step 5.1. Thus, a suitable layout method must lay
out the hyperedge connecting part 1.1, part 2.1, part 1.3, and
joining step 2.1 again.

2. Moving part 2.3 above joining step 2.1:
The result should be a layout as in the constellation part 3.2,

part 3.3, and joining step 4.1. Thus, a suitable layout method must
lay out the edge connecting part 2.3 and joining step 2.1 again. To
get a clear routing (shortest possible paths, free of intersections,
and few bends [11]), the port connecting part 2.3 to joining step 3.1
has to be moved and the edge between the vertices has to be re-
routed.

A suitable interaction method must therefore be able to handle
hyperedges and move pins. If both properties are given by the
concrete syntax of the GLML, a layout method can be searched
that supports these properties of the GLML.

7 The arrangement follows domain-specific context. For more information see [8].

Figure 2: Example of a DSL

joining step
2.1

part 1.1

process 3.1.1

process 3.1.2 process 3.1.3

part 1.2 part 2.2

part 2.3
joining step 3.1

end part

part 1.3

part 3.2

part 3.3

process 4.1.1

joining step 4.1

joining step
5.1

part 4.2

part 4.3

MODELS '22 Companion, October 23–28, 2022, Montreal, QC,
Canada

G. Wrobel et al.

3 Notation
The classifying schemes in this paper use a notation based on
feature diagrams. Feature diagrams were introduced as part of
Feature-Oriented Domain Analysis (FODA) [23] and later
expanded through various works. The notation used in this paper
includes the extensions by [24].

Table 1: Notation

Symbol Explanation

1

f1

sf a

Feature f1 with optional solitary
subfeature sf a. If the subfeature is set
it can have the values m (mandatory)
and f (forbidden).

2

f1

sf a sf b

Feature f1 with exactly one subfeature
from a group. The specific subfeature
that is set has the value m
(mandatory). All other subfeatures
have the value f (forbidden).
This classifier type is not used for
layout algorithms.

3

f1

sf a sf b

Feature f1 with exactly one subfeature
from a group that is optional. The set
subfeature has the value m
(mandatory). All other subfeatures
have the value f (forbidden).
This classifier type is not used for
layout algorithms.

4

f1

sf a sf b

Feature f1 with at least one subfeature
of a group. The set subfeatures have
the value:
- m (mandatory) for GLML,
- m (mandatory) or s (supported)

for layout algorithms.
- All other subfeatures have the

value:
- f (forbidden) for GLML,
- f (forbidden) or n (not supported)

for layout algorithms.

5

f1

sf a sf b

Feature f1 with optionally one or more
subfeatures of a group. The
subfeatures have the value:
- m (mandatory) or f (forbidden)

for GLML
- m (mandatory), f (forbidden),

s (supported), or n (not
supported) for layout algorithms.

8 In order to keep the actual classifiers compact, default values for individual features
were specified in [25], so that not every feature has to be specified for GLML either

The semantics described by the syntax of the feature diagrams
states whether a feature must be specified for a language or layout
method (lines 2 and 4) or can be specified optionally (lines 3 and
5). The values that the features can take (mandatory and forbidden
for GLML, and additionally supported and not supported for layout
algorithms) then refer to the instance of a feature in a concrete
classifier.

4 Classification Scheme for the Concrete
Syntax of GLML and Layout Algorithms

In [25], we introduced a classification scheme for the concrete
syntax of GLML. The scheme distinguishes between vertices and
edges as well as ports that are assigned to the vertices as essential
components of a GLML. In subsequent work, we extended the
classification scheme and transitioned it to the notation described
above. In [25], only the concrete syntax of GLML is classified.
Here, we now present a classification scheme for layout
algorithms that has the same features as the classification scheme
for the concrete syntax of GLML. This allows the development of
a mapping between both classifiers.

The elements are classified by the following features, each of
which is described by further subfeatures:

- Vertex: label, ports, nesting, rotation, mirroring,
placement.

- Port: label, position, direction, nested, valency.
- Edge: label, structure, direction, across nesting, routing.
It should be noted that rendering aspects are not included in

the classification scheme for layout algorithms. The concrete
graphical appearance of diagram elements, e.g. colors or symbols,
is not part of the scheme.

To show the idea of classifying concrete syntax of a GLML,
classifying layout procedures, and performing the mapping
between the two classifiers, we restrict ourselves to the part of the
classifiers that are required for the example described at the
beginning. Since the interaction of moving a vertex described
there entails a routing procedure, it is reasonable to assume that
the edge classifier is of particular importance for the example
GLML shown in Figure 2.

Figure 3 shows the classifier for the feature structure and the
classifier for the type of routing for edges as well as the classifier
for the position of ports, each for the concrete syntax of a GLML
(left side) and layout algorithm (right side). It is noteworthy that
the top-level features have to be specified in the concrete syntax
of GLML8 and may be specified for the layout algorithms.

(default subfeatures are given, which adopt the value mandatory). For the sake of
brevity, the default values have been omitted in this paper.

Classification and Mapping of Layout Algorithms for Usage in
Graph-Like Modeling Languages

MODELS '22 Companion, October 23–28, 2022, Montreal, QC,
Canada

6 Mapping of Concrete Syntax Classifier and
Layout Algorithm Classifier

To facilitate the mapping between corresponding features f of a
GLML and a layout algorithm, we define the logical operator .
The operator can be applied by iterating through the features of
the mapping candidates and selecting the appropriate row of
Table 2.

Definition (Mapping): For a given classification scheme C, a
mapping between a specific GLML G and a concrete layout
algorithm L is defined as:
A GLML G and a layout algorithm L can be mapped,
or G  L = true, if G.f  L.f = true, f  C.
Conversely, a GLML G and a layout algorithm L cannot be
mapped, or G  L = false, if G.f  L.f = false, f  C.

The semantics of the mapping definition are:
1. If a layout algorithm supports a feature, then the value of this

feature in the GLML classifier is insignificant (case 1-3).
2. A feature that is not supported by a layout algorithm (case 4-

6) cannot be set in the GLML classifier. The layout algorithm
can still be used, if the GLML does not specify the feature at
all (case 6).

3. If a feature is mandatory in a layout algorithm, it also has to
be mandatory in the GLML classifier to form a valid mapping
(case 7-8).

4. If a layout algorithm has a feature set as forbidden, then the
same feature also has to be specified as forbidden in the

9 For the feature value definition see Table 1: m (mandatory), f (forbidden),
s (supported), and n (not supported)

concrete syntax of the GLML (case 10-12).
5. If a feature is not specified for a layout algorithm, then it is

irrelevant. The mapping operator is always true (case 13-15).

Table 2: Mapping Operator9

GLML.f Layout.f GLML.f  Layout.f
1 m s true
2 f s true
3 m  f = Ø s true

4 m n false
5 f n true
6 m  f = Ø n true

7 m m true
8 f m false
9 m  f = Ø m false

10 m f false
11 f f true
12 m  f = Ø f false

13 m
n  s 
m  f = Ø

true

14 f
n  s 
m  f = Ø

true

15 m  f = Ø
n  s 
m  f = Ø

true

Figure 3: Excerpt of the Classifiers of Edges and Pins, for the Concrete Syntax of GLML and Layout Algorithms
Respectively

structure

two ports one porthyper

arbitrary n2m

straight k-linearorthogonal arcs

routing

channel bus

polyline

k(Int)octolinear

position

free fixed

reference

local global

side

east southnorth west

structure

two ports one porthyper

arbitrary n2m

straight k-linearorthogonal arcs

routing

channel bus

polyline

k(Int)octolinear

position

free fixed

reference

local global

side

east southnorth west

Structure Classifier for Edges in GLML Structure classifier for edges in Layout Algorithm

Routing Classifier for Edges in GLML Routing classifier for edges in Layout Algorithm

Position Classifier for Ports in GLML Position Classifier for Ports in Layout Algorithm

MODELS '22 Companion, October 23–28, 2022, Montreal, QC,
Canada

G. Wrobel et al.

Remarks m  f in the GLML classifier means that this
feature is not relevant to the language. It follows that any
mapping is possible, regardless of the feature of the layout
algorithm.
n  s m  f in the layout algorithm classifier means that
this feature is not relevant to the layout. Accordingly, any
mapping is possible, regardless of the GLML feature.
In the following, we use Ø to shorten n  s m  f
and m  f.
s or Ø in the layout classifier means that there is a possible
mapping with any GLML classifier: (m  f  Ø)  (s  Ø) = true .
We use any to shorten m  f  Ø.

Applying the operator to the combination of GLML and layout

algorithm classifiers answers the question of a possible mapping.

6 Concrete Mapping Example
Here we show the relevant classifiers to accomplish a concrete
mapping. The GLML is the example introduced in section 2, and
the layout algorithm is one that supports the described layout
interactions.

The classifier in Figure 5 is an excerpt of the full classifier for
the concrete syntax of the modeling language in Figure 2. All the
classifier features in Figure 3 as well as other, non-pictured,
features (port->direction; edge->direction) were applied.

Accordingly, a layout algorithm that performs the layout
operation of the example is specified by the classifier in Figure 4.

Layout:Moving Vertex
vertex:any

port:any
position

free = s
side = s
fixed = s

edge:any
structure

two port = s
hyper = s
one port = n

routing
straight = n
orthogonal = m

channel = n
bus = s

arcs = n
k-linear = n
polyline = n

Figure 4: Classifier for the Layout Algorithm

Moving Vertex

10 For clarity, Table 3 does not show the full path of each feature, but only the last
two elements in the abbreviated form: feature.subfeature.

GLML:Process Model
vertex:part

port:out
position

fixed = m
direction

directed
output = m

vertex:joining step (not expanded)
port:in

position
fixed = m

direction
directed

input = m
port:out

position
fixed = m

direction
directed

output = m
vertex:joining step (expanded)

port:in
position

side = m
east = m
west = f
north = f
south = f

direction
directed

input = m
port:out

position
fixed = m

direction
directed

output = m
edge:part to joining step (not expanded)

structure
hyper = m

arbitrary = m
routing

othogonal = m
bus = m

direction
directed = m

Figure 5: Classifier for the GLML Process Model

The output of the mapping operation is shown in Table 3.10
The result is that the layout algorithm, as classified in Figure 4,
and the GLML, as classified in Figure 5, can be mapped, so the
layout is applicable to the language.

Classification and Mapping of Layout Algorithms for Usage in
Graph-Like Modeling Languages

MODELS '22 Companion, October 23–28, 2022, Montreal, QC,
Canada

Table 3: Mapping result – Process Model and Moving Vertex

Process
Model

Moving
Vertex



 port classifier
1 position.free any s true
2 position.side any s true
3 position.fixed any s true
4 directed.output any Ø true
5 directed.input any Ø true
6 side.east any Ø true
7 side.west any Ø true
8 side.north any Ø true
9 side.south any Ø true

 edge classifier
10 structure.two port any s true
11 structure.hyper any s true
12 structure.one port f n true
13 hyper.arbitrary any Ø true
14 routing.straight Ø n true
15 routing.orthogonal m m true
16 routing.arcs Ø n true
17 routing.k-linear Ø n true
18 routing.polyline Ø n true
19 orthogonal.bus any s true
20 orthogonal.channel Ø n true
21 direction.directed any Ø true

As another example for the mapping process we have

classified one of the layout algorithms provided in the Eclipse
Layout Kernel (ELK) [21]. Figure 6 shows an excerpt of the
classifier for the Graphviz Dot algorithm.

Layout:ELK Graphviz Dot
vertex:any

port:any
position

free = s
side = n
fixed = s

edge:any
structure

two port = s
hyper = n
one port = n

routing
straight = n
orthogonal = s

channel = n
bus = n

arcs = s
k-linear = n
polyline = s

Figure 6: Classifier for the Layout Algorithm Graphviz Dot

The classification of existing layout algorithms requires some
expert knowledge. The documentation is a typical starting point,
but not sufficient for this task. Test implementations or layout
results have to be examined. Then again, classification has to be
performed only once, and the resulting classifier can be used for
multiple GLML. Having a library of already classified layout
algorithms allows tool developers to create GLML editors quickly
and easily.

Note that we have excluded some features of the layout
algorithm for the sake of a simple comparison. The focus is on the
port and edge classifier, which disregards additional constraints
concerning the placement of vertices.

Mapping between the GLML and the layout is again a simple
application of the mapping operator. To keep the example short
we only show the differences in the mapping of Graphviz Dot
compared to Moving Vertex in Table 4.

Table 4: Mapping result – Process Model and Graphviz Dot
(showing only the differences to Table 3)

Process
Model

Graphviz
Dot



2 position.side m n false
11 structure.hyper m n false
15 routing.orthogonal m s true
16 routing.arcs Ø s true
18 routing.polyline Ø s true
19 orthogonal.bus m n false

The overall mapping operator result shows that Graphviz Dot

is not an applicable layout for the GLML. The mapping fails
mainly because of the port handling.

Fully classifying the various layout algorithms in the ELK will
show that there is at least one applicable algorithm. Applying the
mapping operator to ProcessModel and ELK Layered results in a
positive match.

7 Related Work
A classification scheme for the concrete syntax of GLML was
presented in [25]. In this paper, that classifier serves as the basis
for the classification scheme for the layout algorithms. In [25],
layout algorithms were not classified. For the mapping between
layout procedures and concrete syntax of a GLML and in order to
answer the questions posed at the beginning, both classifiers
based on the same feature model must exist. The authors are not
aware of such classifiers and mapping procedures. The proximity
of GLML to graphs and the requirements to develop layout
procedures for the languages suggest a consideration of
classifications in the graph drawing environment. A great number
of works on graph drawing originated in the 1990s. As an
example, we mention the works of Di Battista et al [18, 26]. Graph
drawing methods exist for different classes of graphs. In [18] a
general framework for graph drawing is presented, which
contains parts of the features of the presented classification

MODELS '22 Companion, October 23–28, 2022, Montreal, QC,
Canada

G. Wrobel et al.

scheme (e.g., edge direction and routing classification). That
framework, however, is strongly focused on concrete layout
aspects (planarity) and properties of graphs (connectivity). Ports,
nested graphs, hypergraphs, and labeling are not mentioned in
this framework. In [26] algorithms for drawing graphs are
classified (into the classes trees, general graphs, planar graphs,
and directed graphs), and a literature study on this differentiation
is conducted. In addition, a few structural feature distinctions
were considered (hypergraphs, compound graphs). There are
other classification approaches for other special properties of
graphs. For port graphs there is a classification regarding an
important feature, the port position, in connection with the
development of specific layout methods [27].

The development of graphical modeling languages, such as
UML and SysML, in the late 1990s and early 2000s and the
associated development of software tools for model-driven
software and systems engineering and development led to the
growing importance of graph drawing algorithms in software
development. In this context, for example, in the work of
Sugiyama [28], a classification of graphs (trees, directed graphs,
undirected graphs, compound graphs) was again made. In
addition, he also classified placement conventions for vertices
(free, parallel in line, concentric circles, radial line, orthogonal
grid and grid based), routing conventions for edges (straight line,
polyline, curved), and various drawing rules.

The vast majority of this work is based on graphs as a
metamodel, classically consisting of vertices and edges. Besides,
there are languages in which the connection points (ports) are
anchored in the metamodel as elements in addition to the vertices
and edges. In [29], netlike schematics is the term used to
differentiate them from graphs. Graphs are considered there,
besides electrical diagrams, technological layouts, and petri nets
as examples of netlike schematics. A general language called
schematic structure description language (SSDL) is presented.

Metamodels corresponding to these netlike schematics are
currently integrated in some frameworks [19–22] and
implemented in layout procedures. But also in these frameworks,
not every layout algorithm can be used for every concrete syntax
based on the metamodel, and there are no mapping mechanisms
to get information about suitable layout methods already during
language engineering.

So-called language workbenches coming from model-driven
development (MDD) are to be considered. In language
workbenches, the abstract and the concrete syntax and the
mapping between them are defined as a metamodel (Eclipse GMF,
EMF, GEF, Obeo, Sirius, and Microsoft DSL, MetaEdit), and
graphical editors for DSL are generated from it. This is exactly
where the challenges arise with regard to the development of
suitable layout algorithms, which are currently not always well
solved for practical applications [30]. In particular, the process of
choosing a valid layout algorithm relies on expert knowledge or
trial-and-error.

The presented classification scheme distinguishes vertices,
ports, and edges as the most important model elements. A
classification of layout methods based on a metamodel with ports

is given in [31]. The elements of the language and the so-called
layout space are also classified there. The vertices (components)
are subdivided, for example, according to their geometric shape
(point, plane, spatial) and orientation (fixed, variable), but also
according to whether their shape and size are fixed or variable.
The layout space represents the area into which the graphical
language is to be embedded. The classification of the layout space
is also done with respect to the spatial dimension and according
to the question of whether the layout space is discrete (grid) or
continuous.

8 Conclusion and Future Work
In this paper, we aimed to improve the language engineering of
GLML by taking human factors into account. In order to consider
human factors in the application of GLML, layout procedures
were identified as an essential component for tool development.
The main hindrance for the integration of good layout procedures
into modeling tools is the applicability of existing graph drawing
algorithms.

We present an approach that provides the mapping of layout
algorithms to GLML based on a general metamodel for GLML. For
this purpose, we developed a mapping operator that builds on
corresponding classification schemes for the concrete syntax of
GLML and for layout algorithms. We demonstrated the
performance of the mapping using a real-world example
consisting of a graphical language and interactive layout support.

Usage of the mapping approach can lead to better modeling
tools for newly developed languages. Frameworks for language
engineering can implement the mapping to support GLML with
unique concrete syntax by offering a well-fitted layout. This
would enable a wider user base for both modeling languages and
layout procedures.

The classification scheme will be extended in the future. We
investigate qualitative values of features, e.g., a preferred value for
features of GLML concrete syntax, or quantitative features, like
the number of edges connectable to a single port.

The next development step will be the integration of the
proposed mapping approach into an existing software framework
[19]. This framework already supports the quick development of
modeling tools for new GLML and a library of layout algorithms.
A current research project aims to create new visualisations and
editors assisting mechanical engineers during the design process
of complex and interconnected structures in CAD models [15].
Therefore new GDSL had to be designed. By mapping the
languages onto layout algorithms, the development time for
software tools can be shortened.

9 Acknowledgements
The authors thank the German Research Foundation (DFG) for the
financial support of the research project “Method for the Model-
Driven Design of Deep Drawing Tools” (project number BA
6300/1-3).

Classification and Mapping of Layout Algorithms for Usage in
Graph-Like Modeling Languages

MODELS '22 Companion, October 23–28, 2022, Montreal, QC,
Canada

REFERENCE
[1] M. Brambilla, J. Cabot, and M. Wimmer, “Model-Driven Software Engineering

in Practice,” Synthesis Lectures on Software Engineering, vol. 1, no. 1, pp. 1–182,
2012, doi: 10.2200/S00441ED1V01Y201208SWE001.

[2] B. Rumpe, “Modelling for and of Digital Twins,” Oct. 12 2021. Accessed:
ModDiT’21: 1st International Workshop on Model-Driven Engineering of
Digital Twins. [Online]. Available: https://gemoc.org/events/moddit2021

[3] OMG UML 2.5.1, Unified Modeling Language, v2.5.1. [Online]. Available: https://
www.omg.org/spec/UML/2.5.1/PDF

[4] OMG SysML 1.6, Systems Modeling Language v1.6. [Online]. Available: https://
www.omg.org/spec/SysML/1.6/

[5] B. Selic and S. Gérard, Modeling and analysis of real-time and embedded systems
with UML and MARTE: Developing cyber-physical systems. Amsterdam: Elsevier
Morgan Kaufmann, 2014. [Online]. Available: http://site.ebrary.com/lib/
alltitles/docDetail.action?docID=10793779

[6] OMG BPMN 2.0.2, Business Process Model and Notation. [Online]. Available:
https://www.omg.org/spec/BPMN/

[7] Simulink - Simulation und Model-Based Design. [Online]. Available: https://
de.mathworks.com/products/simulink.html (accessed: Jul. 23 2021).

[8] G. Wrobel, R. Scheffler, and T. Kehrer, “Rethinking the Traditional Design of
Meta-Models: Layout Matters for the Graphical Modeling of Technical
Systems,” in 2021 ACM/IEEE 24th International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C), 2021, pp. 351–360.

[9] Electrical and Electronics Diagrams, Y14.15-1966, USAS Y14.15-1966, New York,
1966.

[10] Graphical symbols for diagrams: Part 2: Symbol elements, qualifying symbols and
other symbols havin general application, EN 60617-2, EN 60617-2, 1997.

[11] M. Taylor and P. Rodgers, “Applying Graphical Design Techniques to Graph
Visualisation,” in Proceedings / Ninth International Conference on Information
Visualisation, 2005: 06 - 08 July 2005, [London, England, London, England, 2005,
pp. 651–656.

[12] S. Sendall and W. Kozaczynski, “Model transformation: the heart and soul of
model-driven software development,” IEEE Softw., vol. 20, no. 5, pp. 42–45, 2003,
doi: 10.1109/MS.2003.1231150.

[13] E. Augenstein, S. Herbergs, and G. Wrobel, “TOP-Energy - Ein Framework für
Softwarelösungen in der Energietechnik,” in eOrganisation : Service-, Prozess-,
Market-Engineering : 8. Internationale Tagung Wirtschaftsinformatik, 2007, pp.
947–954.

[14] GFaI Gesellschaft zur Förderung angewandter Informatik e. V., TOP-Energy 3.0.
[Online]. Available: www.top-energy.de/en/our-offer/top-energy-30

[15] R. Scheffler, S. Koch, G. Wrobel, M. Pleßow, C. Buse, and B.-A. Behrens,
“Modelling CAD Models: Method for the Model Driven Design of CAD Models
for Deep Drawing Tools,” in 4th International Conference on Model-Driven
Engineering and Software Development (MODELSWARD), 2016, pp. 377–383.

[16] P. Eades, W. Lai, K. Misue, and K. Sugiyama, “Preserving the mental map of a
diagram,” in Proceedings of Compugraphics ’91, 1991, pp. 24–33.

[17] D. Archambault and H. C. Purchase, “The mental map and memorability in
dynamic graphs,” in IEEE Pacific Visualization Symposium (PacificVis), 2012: Feb.
28 2012 - March 2 2012, Songdo, Korea, Songdo, Korea (South), 2012, pp. 89–96.

[18] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, Graph drawing: Algorithms
for the visualization of graphs. Upper Saddle River, NJ: Prentice Hall, 1999.

[19] G. Wrobel, R.-E. Ebert, and M. Pleßow, “Graph-Based Engineering Systems - A
Family of Software Applications and their Underlying Framework,” vol. 6, 2007,
doi: 10.14279/tuj.eceasst.6.50.

[20] J. Barzdins and A. Kalnins, “Metamodel Specialization for Graphical Language
and Editor Definition,” BJMC, vol. 4, no. 4, pp. 910–933, 2016, doi:
10.22364/bjmc.2016.4.4.20.

[21] Eclipse Foundation, Eclipse Layout Kernel: Graph Data Structure. [Online].
Available: https://www.eclipse.org/elk/ (accessed: Oct. 31 2021).

[22] yWorks GmbH, The Graph Model. [Online]. Available: https://docs.yworks.com
/yfileshtml/#/dguide/graph

[23] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-Oriented
Domain Analysis (FODA) Feasibility Study,” Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA CMU/SEI-90-TR-021, 1990.
[Online]. Available: http://resources.sei.cmu.edu/library/asset-view.cfm?
AssetID=11231

[24] K. Czarnecki and C. H. P. Kim, Eds., Cardinality-based feature modeling and
constraints: A progress report, 2005.

[25] G. Wrobel and R. Scheffler, “Classification Scheme for the Concrete Syntax of
Graph-like Modeling Languages for Layout Algorithm Reuse,” in 2022, pp. 344–
351.

[26] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, “Algorithms for drawing
graphs: an annotated bibliography,” Computational Geometry, vol. 4, no. 5, pp.
235–282, 1994, doi: 10.1016/0925-7721(94)00014-x.

[27] C. D. Schulze, M. Spönemann, and R. von Hanxleden, “Drawing layered graphs
with port constraints,” Journal of Visual Languages & Computing, vol. 25, no. 2,
pp. 89–106, 2014, doi: 10.1016/j.jvlc.2013.11.005.

[28] K. Sugiyama, Graph Drawing and Applications for Software and Knowledge
Engineers. Singapore: World Scientific Publishing Co Pte Ltd, 2002. [Online].
Available: https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=
1679597

[29] M. Pleßow and P. L. Simeonov, “Netlike Schematics and their Structure
Description,” Workshop on Informatics in Industrial Automation, pp. 144–163,
1989.

[30] J. Cooper et al., “Model-Based Development of Engine Control Systems:
Experiences and Lessons Learnt,” in ACM/IEEE 24th International Conference on
Model Driven Engineering Languages and Systems, 2021.

[31] M. May and W. Nehrlich, “Zu einigen Problemen der Layout-Synthese: Teil I:
Platzierung,” in AdW/ZKI, Layout-Entwurf: Mathematische Probleme und
Verfahren, M. May, W. Nehrlich, and M. Weese, Eds., Berlin: Zentralinst. für
Kybernetik und Informationsprozesse der Akad. der Wiss. der DDR, 1988, pp.
8–71.

