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ABSTRACT 
Graph-like modeling languages (GLML) are important modeling 
artifacts for software tools that are used in the environment of 
software and systems engineering, digital twins, and domain-
specific modeling. Just as with textual languages, the concrete 
syntax is the representation of the language elements intended for 
humans and thus has a decisive influence on the 
comprehensibility and usability of the language.  

The concrete syntax of GLML is often defined less precisely or in 
less detail when designing metamodels. While metamodels can be 
designed independently or even without concrete syntax, the 
latter is required for the actual usage of a graphical language. The 
layout and the interaction support for editing the language 
elements are commonly delegated to tool development. However, 
the development of modeling tools focuses on functionality such 
as model transformation and model execution, disregarding 
usability and handling. Low user acceptance then leads to niche 
applications and a limited number of users. The main reason for 
the lack of support for laying out and editing the language 
elements are complex integration challenges mainly concerning 
the development or adaptation of suitable layout procedures for 
GLML. 

Some frameworks offer a remedy by providing layout procedures 
for GLML. However, GLML differ from each other concerning 
their concrete syntax. Even minor differences in the concrete 
syntax of two languages can make the desirransferable or only 
transferable through complex adaptations. Formal methods for 
matching the concrete syntax of a GLML with existing layout 
procedures as early as during the development of the language are 
missing. 

In this paper, we present a classification scheme for layout 
procedures for GLML. The classification scheme is based on a 
classification scheme we developed for the concrete syntax of 
GLML, and it contains significant features. We define a mapping 
procedure between the two classifiers. As a result, the mapping 
decides whether a layout procedure can be used for a GLML. Both 
the classification scheme and the process of mapping are 
demonstrated in a real-world example of a technical graphical 
domain-specific modeling language.  

The presented approach supports the design of GLML and the tool 
development for GLML. It can be an important step towards 
automated tool development. 
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1 Introduction 
Increasing digitization and the requirements to develop and 
master more and more complex systems have brought paradigms 
and approaches such as Model-Driven Engineering (MDE) [1] and 
Digital Twins [2] into the focus of research and industrial 
application. Essential artifacts for this are models. As a 
representation of systems throughout their life cycle, models are 
the most important interface between man and machine. Thus, 
models can facilitate the transition between informally sketched 
requirements or drafts to implementations, or they are the basis 
for simulations and optimizations. There are both textual and 
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graphical modeling languages, whereby the latter can have their 
particular strength in a clear representation of the different model 
elements and their interrelationships.  

A considerable number of well-known graphical modeling 
languages that are widely used in industrial applications (e.g., 
automotive, avionics, or telecommunications) exist. These include 
standardized modeling languages such as UML [3], which can be 
tailored to specific domains using the UML profile mechanism, 
resulting in languages such as SysML [4] or MARTE [5]. In 
addition to UML-based languages, there are varieties of dedicated 
modeling languages with a narrower scope. Prominent examples 
of this are BPMN [6] and Matlab/Simulink [7]. These languages, 
also called General-Purpose Modeling Languages (GPML), have 
some general domain references (e.g., UML for modeling the 
structure and behavior of object-oriented software, 
Matlab/Simulink for simulation models), but they are also used for 
other specific domains. Their universality implies that their 
language constructs are not very specifically targeted to a 
particular domain. It is even the case that the concrete syntax of 
GPML is loosely defined [8]. This is also reflected in the users of 
these languages. Either they are (software) developers who are 
familiar with abstract language constructs through programming 
languages, or the users come from an academic environment and 
have familiarized themselves with a GPML for their academic 
work. The missing or weak definition of the concrete syntax even 
allows this user group freedom in the use of the language. 

Another class of languages has a stronger concrete domain 
reference. Users of these domain-specific languages (DSL) are 
domain experts who often have less experience with abstract 
languages. In order to enable proper use of these languages, many 
of them have a more detailed description of their concrete syntax. 
There are some very old, widely used languages that are still in 
use, such as circuit diagrams for the representation of electrical 
circuits [9, 10]. Their concrete syntax, but also aesthetic criteria, 
as proclaimed in the field of graph drawing [11], and layout 
requirements are partly specified in great detail using standards.1 
On the one hand, this makes tool development easier; and on the 
other hand, it makes it easier for users to learn and master the 
language. Adherence to the standard means that once learned, it 
can be used repeatedly, and models can be exchanged. Such 
languages can justifiably be called successful because they have 
been used for decades. 

In more recent language development, the human-centric 
aspects are less in focus. Model executability and model 
transformations are the core of MDE [12], and the abstract syntax 
definition of languages is the focus of language engineering. 

According to our experience from the development of GLML 
for different application domains in engineering,2 human factors 

                                                                    
1  For example: “Lines between symbols should be horizontal or vertical with a 
minimum of line crossings, and with spacing to avoid crowding“ [9]. 
2  For example, flowchart diagrams for energy system engineering [13, 14] or 
parameter maps for parametric 3D-CAD models [15]. 
3 In [8], graphical modeling languages for technical systems are explicitly the subject 
of consideration. The authors do not want to exclude a generalization to graphical 
modeling in general at this point, but they do not want to proclaim it either. 
4 The placement of vertices and routing of edges is what is called layout in this paper. 

are one, if not the decisive, criterion for the successful 
establishment of a graphical modeling system (for technical 
systems) [8].3  The central hypothesis stated in [8] is that the 
layout of GLML is the most important criterion for understanding, 
creating, and editing models. All three use cases are of great 
importance in the engineering process for technical systems. A 
modeling process starts with a blank sheet (creating). Through 
user interactions, the model grows; and, as it grows, it requires 
changes in the placement of vertices and the routing of 
connections4 of a GLML. The models are not built all at once or 
by just one user. Thus, the model must also be understandable 
(understanding) and changeable (editing). Making each 
interaction efficient and effective to use requires good layout 
procedures that place vertices and route connections, ideally 
taking into account the users' mental map [16, 17].  

A special field of graph theory deals with the placement of 
vertices and the routing of edges: graph drawing [18]. In the last 
decades, many algorithms for placing vertices (grid, trees, layered, 
series-parallel, organic, circular, etc.) and routing networks 
(straight lines, rectilinear lines, busses and channels, polylines, 
arcs, etc.) were developed there. In addition, special types of 
graphs were studied (port graphs, hypergraphs, nested graphs, 
labeled graphs), and algorithms for them were developed. So why 
not simply include the many layout methods of graph drawing in 
language engineering and integrate them into the tools? 

From our point of view, there are two main reasons for this. 
1. The classical graph model consisting of vertices and 

edges is not well suited as a metamodel for GLML, and 
2. in language engineering, it is not clear which layout 

methods are suitable for the concrete syntax of a 
language. There are so many different types of graph 
models or graph-like metamodels and very many layout 
methods tailored for these models. 

The first reason is mainly based on the fact that the vertices of 
GLML are not dimensionless vertices to which edges can be 
connected anywhere. In GLML, the vertices are two-dimensional 
objects, and their connection points often have semantics5. The 
concrete syntax of these connection points, e.g., whether they can 
be moved or exchanged, have an enormous impact on routing 
algorithms, for example, when it comes to minimizing 
intersections. 

These aspects are already incorporated into the metamodels of 
some modeling frameworks. A number of models [19–22] 
distinguish between the core elements vertex, edge, and port.  

This paper is dedicated to the second reason mentioned. We 
present an approach that can make statements about whether a 
layout procedure can be used structurally for a GLML as early as 

5  For example, the connection points in UML activities are distinguished 
(symbolically) in that for the object flow a square symbolizes the connection point, 
but no symbol is used for the control flow. Another example are the connection 
points at symbols in circuit diagrams, which have a physical representation as 
connection points of cables and for which therefore a symbolic distinction is of 
immense importance. 
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during language engineering. The following questions are to be 
answered by this approach: 

1. Can a layout method related to the concrete syntax of a 
graphical language be used for it?  

2. Which layout algorithms are available for a GLML and 
which are not?  

3. And which layout algorithms are no longer available 
because of a change in the concrete syntax of a GLML?6 

To answer these questions, we present the following approach 
in this paper: 

We define a classification scheme for the concrete syntax of 
GLML and a classification scheme for layout procedures. Both 
schemes are feature-based (Section 3), based on the metamodel 
core in Figure 1, and the features between the schemes correspond 
with each other (Section 4). The second step is to define a mapping 
between the two classifiers that can answer the questions 
described above. The approach is applied (Section 6) to the 
example described at the beginning (Section 2). The paper ends 
with a Section on related work (Section 7) and a summary and 
outlook (Section 8). 

GLML

vertex edge

[1..*] [1..*]

port

[0..*]

 
Figure 1: GLML Core Elements 

2 Example Application 
In this Section, we motivate the classification of the concrete 
syntax of GLML and the classification of layout procedures for 
GLML, and we describe the requirement to a mapping between 
the two classifiers using a real-world example.  

                                                                    
6 This could have an influence on the definition of the concrete syntax of a language, 
if alternatives are possible, and more suitable layout algorithms are available for 
them. 

The example in Figure 2 shows a process model for a body 
construction plant of an automotive manufacturer. The model 
describes how further components (part 1.2 to part 4.3) are 
mounted to an initial component (part 1.1). The components are 
joined together in joining steps, which are represented by the 
larger vertices. A joining step contains a subgraph that describes 
the type and sequence of joining processes (e.g., welding, 
clinching) and that is to be displayed either expanded (joining step 
3.1 and joining step 4.1) or unexpanded (joining step 2.1 and joining 
step 5.1) in the editor. The placement of the vertices in the process 
model reflects the semantics of the assembly. On the one hand, 
the arrangement of the components symbolizes the passage of the 
main component through the plant in the form of the horizontal 
arrangement of the vertices. On the other hand, the arrangement 
of the vertices at the top or bottom shows the mounting of their 
respective parts to the right and left of the main part.7 

When editing a process model, a typical interaction is moving 
vertices in the graph. The act of moving vertices symbolizing 
components (part in Figure 2) can be divided into two cases. In 
case 1, the joining step that is to the right of vertex part 1.1, is not 
expanded. In case 2, it is expanded. In the following, we look at 
the two interactions and the expected layout result:  

1. Moving part 1.3 above part 1.1: 
The result should be a layout as in constellation part 4.2, part 

4.3, and joining step 5.1. Thus, a suitable layout method must lay 
out the hyperedge connecting part 1.1, part 2.1, part 1.3, and 
joining step 2.1 again.  

2. Moving part 2.3 above joining step 2.1: 
The result should be a layout as in the constellation part 3.2, 

part 3.3, and joining step 4.1. Thus, a suitable layout method must 
lay out the edge connecting part 2.3 and joining step 2.1 again. To 
get a clear routing (shortest possible paths, free of intersections, 
and few bends [11]), the port connecting part 2.3 to joining step 3.1 
has to be moved and the edge between the vertices has to be re-
routed. 

A suitable interaction method must therefore be able to handle 
hyperedges and move pins. If both properties are given by the 
concrete syntax of the GLML, a layout method can be searched 
that supports these properties of the GLML.  

7 The arrangement follows domain-specific context. For more information see [8]. 

Figure 2: Example of a DSL 

joining step 
2.1

part 1.1

process 3.1.1

process 3.1.2 process 3.1.3

part 1.2 part 2.2

part 2.3
joining step 3.1

end part

part 1.3

part 3.2

part 3.3

process 4.1.1

joining step 4.1

joining step 
5.1

part 4.2

part 4.3
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3 Notation 
The classifying schemes in this paper use a notation based on 
feature diagrams. Feature diagrams were introduced as part of 
Feature-Oriented Domain Analysis (FODA) [23] and later 
expanded through various works. The notation used in this paper 
includes the extensions by [24]. 

Table 1: Notation 

# Symbol Explanation 

1 

f1

sf a

 

Feature f1 with optional solitary 
subfeature sf a. If the subfeature is set 
it can have the values m (mandatory) 
and f (forbidden).  

2 

f1

sf a sf b

 

Feature f1 with exactly one subfeature 
from a group. The specific subfeature 
that is set has the value m 
(mandatory). All other subfeatures 
have the value f (forbidden).  
This classifier type is not used for 
layout algorithms. 

3 

f1

sf a sf b

 

Feature f1 with exactly one subfeature 
from a group that is optional. The set 
subfeature has the value m 
(mandatory). All other subfeatures 
have the value f (forbidden).  
This classifier type is not used for 
layout algorithms. 

4 

f1

sf a sf b

 

Feature f1 with at least one subfeature 
of a group. The set subfeatures have 
the value: 
- m (mandatory) for GLML, 
- m (mandatory) or s (supported) 

for layout algorithms. 
- All other subfeatures have the 

value: 
- f (forbidden) for GLML, 
- f (forbidden) or n (not supported) 

for layout algorithms. 

5 

f1

sf a sf b

 

Feature f1 with optionally one or more 
subfeatures of a group. The 
subfeatures have the value: 
- m (mandatory) or f (forbidden) 

for GLML 
- m (mandatory), f (forbidden), 

s (supported), or n (not 
supported) for layout algorithms. 

                                                                    
8 In order to keep the actual classifiers compact, default values for individual features 
were specified in [25], so that not every feature has to be specified for GLML either 

The semantics described by the syntax of the feature diagrams 
states whether a feature must be specified for a language or layout 
method (lines 2 and 4) or can be specified optionally (lines 3 and 
5). The values that the features can take (mandatory and forbidden 
for GLML, and additionally supported and not supported for layout 
algorithms) then refer to the instance of a feature in a concrete 
classifier.  

4 Classification Scheme for the Concrete 
Syntax of GLML and Layout Algorithms  

In [25], we introduced a classification scheme for the concrete 
syntax of GLML. The scheme distinguishes between vertices and 
edges as well as ports that are assigned to the vertices as essential 
components of a GLML. In subsequent work, we extended the 
classification scheme and transitioned it to the notation described 
above. In [25], only the concrete syntax of GLML is classified. 
Here, we now present a classification scheme for layout 
algorithms that has the same features as the classification scheme 
for the concrete syntax of GLML. This allows the development of 
a mapping between both classifiers. 

The elements are classified by the following features, each of 
which is described by further subfeatures: 

- Vertex: label, ports, nesting, rotation, mirroring, 
placement. 

- Port: label, position, direction, nested, valency. 
- Edge: label, structure, direction, across nesting, routing. 
It should be noted that rendering aspects are not included in 

the classification scheme for layout algorithms. The concrete 
graphical appearance of diagram elements, e.g. colors or symbols, 
is not part of the scheme. 

To show the idea of classifying concrete syntax of a GLML, 
classifying layout procedures, and performing the mapping 
between the two classifiers, we restrict ourselves to the part of the 
classifiers that are required for the example described at the 
beginning. Since the interaction of moving a vertex described 
there entails a routing procedure, it is reasonable to assume that 
the edge classifier is of particular importance for the example 
GLML shown in Figure 2.  

Figure 3 shows the classifier for the feature structure and the 
classifier for the type of routing for edges as well as the classifier 
for the position of ports, each for the concrete syntax of a GLML 
(left side) and layout algorithm (right side). It is noteworthy that 
the top-level features have to be specified in the concrete syntax 
of GLML8 and may be specified for the layout algorithms.  
 
 
 
 
 
  

(default subfeatures are given, which adopt the value mandatory). For the sake of 
brevity, the default values have been omitted in this paper. 
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6 Mapping of Concrete Syntax Classifier and 
Layout Algorithm Classifier 

To facilitate the mapping between corresponding features f of a 
GLML and a layout algorithm, we define the logical operator . 
The operator can be applied by iterating through the features of 
the mapping candidates and selecting the appropriate row of 
Table 2.  

Definition (Mapping): For a given classification scheme C, a 
mapping between a specific GLML G and a concrete layout 
algorithm L is defined as: 
A GLML G and a layout algorithm L can be mapped, 
or G  L = true, if G.f  L.f = true, f  C. 
Conversely, a GLML G and a layout algorithm L cannot be 
mapped, or G  L = false, if G.f  L.f = false, f  C. 

The semantics of the mapping definition are: 
1. If a layout algorithm supports a feature, then the value of this 

feature in the GLML classifier is insignificant (case 1-3). 
2. A feature that is not supported by a layout algorithm (case 4-

6) cannot be set in the GLML classifier. The layout algorithm 
can still be used, if the GLML does not specify the feature at 
all (case 6). 

3. If a feature is mandatory in a layout algorithm, it also has to 
be mandatory in the GLML classifier to form a valid mapping 
(case 7-8).  

4. If a layout algorithm has a feature set as forbidden, then the 
same feature also has to be specified as forbidden in the 

                                                                    
9  For the feature value definition see Table 1: m (mandatory), f (forbidden),  
s (supported), and n (not supported) 

concrete syntax of the GLML (case 10-12). 
5. If a feature is not specified for a layout algorithm, then it is 

irrelevant. The mapping operator is always true (case 13-15). 

Table 2: Mapping Operator9 

# GLML.f Layout.f GLML.f  Layout.f 
1 m s true 
2 f s true 
3 m  f = Ø s true 

4 m n false 
5 f n true 
6 m  f = Ø n true 

7 m m true 
8 f m false 
9 m  f = Ø m false 

10 m f false 
11 f f true 
12 m  f = Ø f false 

13 m 
n  s  
m  f = Ø 

true 

14 f 
n  s  
m  f = Ø 

true 

15 m  f = Ø 
n  s  
m  f = Ø 

true 

Figure 3: Excerpt of the Classifiers of Edges and Pins, for the Concrete Syntax of GLML and Layout Algorithms 
Respectively 

structure

two ports one porthyper

arbitrary n2m

straight k-linearorthogonal arcs

routing

channel bus

polyline

k(Int)octolinear

position

free fixed

reference

local global

side

east southnorth west
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straight k-linearorthogonal arcs
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channel bus
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Structure Classifier for Edges in GLML Structure classifier for edges in Layout Algorithm

Routing Classifier for Edges in GLML Routing classifier for edges in Layout Algorithm

Position Classifier for Ports in GLML Position Classifier for Ports in Layout Algorithm
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Remarks m  f in the GLML classifier means that this 
feature is not relevant to the language. It follows that any 
mapping is possible, regardless of the feature of the layout 
algorithm. 
n  s m  f in the layout algorithm classifier means that 
this feature is not relevant to the layout. Accordingly, any 
mapping is possible, regardless of the GLML feature.  
In the following, we use Ø to shorten n  s m  f  
and m  f. 
s or Ø in the layout classifier means that there is a possible 
mapping with any GLML classifier: (m  f  Ø)  (s  Ø) = true . 
We use any to shorten m  f  Ø. 

 
Applying the operator to the combination of GLML and layout 

algorithm classifiers answers the question of a possible mapping. 

6 Concrete Mapping Example 
Here we show the relevant classifiers to accomplish a concrete 
mapping. The GLML is the example introduced in section 2, and 
the layout algorithm is one that supports the described layout 
interactions. 

The classifier in Figure 5 is an excerpt of the full classifier for 
the concrete syntax of the modeling language in Figure 2. All the 
classifier features in Figure 3 as well as other, non-pictured, 
features (port->direction; edge->direction) were applied.  

Accordingly, a layout algorithm that performs the layout 
operation of the example is specified by the classifier in Figure 4.  

Layout:Moving Vertex
vertex:any

port:any
position

free = s
side = s
fixed = s

edge:any
structure

two port = s
hyper = s
one port = n

routing
straight = n
orthogonal = m

channel = n
bus = s

arcs = n
k-linear = n
polyline = n

 
Figure 4: Classifier for the Layout Algorithm  

Moving Vertex 

 

                                                                    
10 For clarity, Table 3 does not show the full path of each feature, but only the last 
two elements in the abbreviated form: feature.subfeature.  

GLML:Process Model
vertex:part

port:out
position 

fixed = m
direction

directed
output = m

vertex:joining step (not expanded)
port:in

position 
fixed = m

direction
directed

input = m
port:out

position 
fixed = m

direction
directed

output = m
vertex:joining step (expanded)

port:in
position

side = m 
east = m
west = f
north = f
south = f

direction
directed

input = m
port:out

position 
fixed = m

direction
directed

output = m
edge:part to joining step (not expanded)

structure
hyper = m

arbitrary = m
routing

othogonal = m
bus = m

direction
directed = m

 
Figure 5: Classifier for the GLML Process Model 

The output of the mapping operation is shown in Table 3.10 
The result is that the layout algorithm, as classified in Figure 4, 
and the GLML, as classified in Figure 5, can be mapped, so the 
layout is applicable to the language. 
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Table 3: Mapping result – Process Model and Moving Vertex 

#  Process 
Model 

Moving 
Vertex 

 

 port classifier 
1 position.free any s true 
2 position.side any s true 
3 position.fixed any s true 
4 directed.output any Ø true 
5 directed.input any Ø true 
6 side.east any Ø true 
7 side.west any Ø true 
8 side.north any Ø true 
9 side.south any Ø true 

 edge classifier 
10 structure.two port any s true 
11 structure.hyper any s true 
12 structure.one port f n true 
13 hyper.arbitrary any Ø true 
14 routing.straight Ø n true 
15 routing.orthogonal m m true 
16 routing.arcs Ø n true 
17 routing.k-linear Ø n true 
18 routing.polyline Ø n true 
19 orthogonal.bus any s true 
20 orthogonal.channel Ø n true 
21 direction.directed any Ø true 

 
As another example for the mapping process we have 

classified one of the layout algorithms provided in the Eclipse 
Layout Kernel (ELK) [21]. Figure 6 shows an excerpt of the 
classifier for the Graphviz Dot algorithm.  

Layout:ELK Graphviz Dot
vertex:any

port:any
position

free = s
side = n
fixed = s

edge:any
structure

two port = s
hyper = n
one port = n

routing
straight = n
orthogonal = s

channel = n
bus = n

arcs = s
k-linear = n
polyline = s

 
Figure 6: Classifier for the Layout Algorithm Graphviz Dot 

The classification of existing layout algorithms requires some 
expert knowledge. The documentation is a typical starting point, 
but not sufficient for this task. Test implementations or layout 
results have to be examined. Then again, classification has to be 
performed only once, and the resulting classifier can be used for 
multiple GLML. Having a library of already classified layout 
algorithms allows tool developers to create GLML editors quickly 
and easily. 

Note that we have excluded some features of the layout 
algorithm for the sake of a simple comparison. The focus is on the 
port and edge classifier, which disregards additional constraints 
concerning the placement of vertices.  

Mapping between the GLML and the layout is again a simple 
application of the mapping operator. To keep the example short 
we only show the differences in the mapping of Graphviz Dot 
compared to Moving Vertex in Table 4. 

Table 4: Mapping result – Process Model and Graphviz Dot 
(showing only the differences to Table 3) 

#  Process 
Model 

Graphviz 
Dot 

 

2 position.side m n false 
11 structure.hyper m n false 
15 routing.orthogonal m s true 
16 routing.arcs Ø s true 
18 routing.polyline Ø s true 
19 orthogonal.bus m n false 

 
The overall mapping operator result shows that Graphviz Dot 

is not an applicable layout for the GLML. The mapping fails 
mainly because of the port handling.  

Fully classifying the various layout algorithms in the ELK will 
show that there is at least one applicable algorithm. Applying the 
mapping operator to ProcessModel and ELK Layered results in a 
positive match.   

7 Related Work 
A classification scheme for the concrete syntax of GLML was 
presented in [25]. In this paper, that classifier serves as the basis 
for the classification scheme for the layout algorithms. In [25], 
layout algorithms were not classified. For the mapping between 
layout procedures and concrete syntax of a GLML and in order to 
answer the questions posed at the beginning, both classifiers 
based on the same feature model must exist. The authors are not 
aware of such classifiers and mapping procedures. The proximity 
of GLML to graphs and the requirements to develop layout 
procedures for the languages suggest a consideration of 
classifications in the graph drawing environment. A great number 
of works on graph drawing originated in the 1990s. As an 
example, we mention the works of Di Battista et al [18, 26]. Graph 
drawing methods exist for different classes of graphs. In [18] a 
general framework for graph drawing is presented, which 
contains parts of the features of the presented classification 
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scheme (e.g., edge direction and routing classification). That 
framework, however, is strongly focused on concrete layout 
aspects (planarity) and properties of graphs (connectivity). Ports, 
nested graphs, hypergraphs, and labeling are not mentioned in 
this framework. In [26] algorithms for drawing graphs are 
classified (into the classes trees, general graphs, planar graphs, 
and directed graphs), and a literature study on this differentiation 
is conducted. In addition, a few structural feature distinctions 
were considered (hypergraphs, compound graphs). There are 
other classification approaches for other special properties of 
graphs. For port graphs there is a classification regarding an 
important feature, the port position, in connection with the 
development of specific layout methods [27].  

The development of graphical modeling languages, such as 
UML and SysML, in the late 1990s and early 2000s and the 
associated development of software tools for model-driven 
software and systems engineering and development led to the 
growing importance of graph drawing algorithms in software 
development. In this context, for example, in the work of 
Sugiyama [28], a classification of graphs (trees, directed graphs, 
undirected graphs, compound graphs) was again made. In 
addition, he also classified placement conventions for vertices 
(free, parallel in line, concentric circles, radial line, orthogonal 
grid and grid based), routing conventions for edges (straight line, 
polyline, curved), and various drawing rules. 

The vast majority of this work is based on graphs as a 
metamodel, classically consisting of vertices and edges. Besides, 
there are languages in which the connection points (ports) are 
anchored in the metamodel as elements in addition to the vertices 
and edges. In [29], netlike schematics is the term used to 
differentiate them from graphs. Graphs are considered there, 
besides electrical diagrams, technological layouts, and petri nets 
as examples of netlike schematics. A general language called 
schematic structure description language (SSDL) is presented.   

Metamodels corresponding to these netlike schematics are 
currently integrated in some frameworks [19–22] and 
implemented in layout procedures. But also in these frameworks, 
not every layout algorithm can be used for every concrete syntax 
based on the metamodel, and there are no mapping mechanisms 
to get information about suitable layout methods already during 
language engineering.  

So-called language workbenches coming from model-driven 
development (MDD) are to be considered. In language 
workbenches, the abstract and the concrete syntax and the 
mapping between them are defined as a metamodel (Eclipse GMF, 
EMF, GEF, Obeo, Sirius, and Microsoft DSL, MetaEdit), and 
graphical editors for DSL are generated from it. This is exactly 
where the challenges arise with regard to the development of 
suitable layout algorithms, which are currently not always well 
solved for practical applications [30]. In particular, the process of 
choosing a valid layout algorithm relies on expert knowledge or 
trial-and-error. 

The presented classification scheme distinguishes vertices, 
ports, and edges as the most important model elements. A 
classification of layout methods based on a metamodel with ports 

is given in [31]. The elements of the language and the so-called 
layout space are also classified there. The vertices (components) 
are subdivided, for example, according to their geometric shape 
(point, plane, spatial) and orientation (fixed, variable), but also 
according to whether their shape and size are fixed or variable. 
The layout space represents the area into which the graphical 
language is to be embedded. The classification of the layout space 
is also done with respect to the spatial dimension and according 
to the question of whether the layout space is discrete (grid) or 
continuous. 

8 Conclusion and Future Work 
In this paper, we aimed to improve the language engineering of 
GLML by taking human factors into account. In order to consider 
human factors in the application of GLML, layout procedures 
were identified as an essential component for tool development. 
The main hindrance for the integration of good layout procedures 
into modeling tools is the applicability of existing graph drawing 
algorithms.  

We present an approach that provides the mapping of layout 
algorithms to GLML based on a general metamodel for GLML. For 
this purpose, we developed a mapping operator that builds on 
corresponding classification schemes for the concrete syntax of 
GLML and for layout algorithms. We demonstrated the 
performance of the mapping using a real-world example 
consisting of a graphical language and interactive layout support. 

Usage of the mapping approach can lead to better modeling 
tools for newly developed languages. Frameworks for language 
engineering can implement the mapping to support GLML with 
unique concrete syntax by offering a well-fitted layout. This 
would enable a wider user base for both modeling languages and 
layout procedures. 

The classification scheme will be extended in the future. We 
investigate qualitative values of features, e.g., a preferred value for 
features of GLML concrete syntax, or quantitative features, like 
the number of edges connectable to a single port.  

The next development step will be the integration of the 
proposed mapping approach into an existing software framework 
[19]. This framework already supports the quick development of 
modeling tools for new GLML and a library of layout algorithms. 
A current research project aims to create new visualisations and 
editors assisting mechanical engineers during the design process 
of complex and interconnected structures in CAD models [15].  
Therefore new GDSL had to be designed. By mapping the 
languages onto layout algorithms, the development time for 
software tools can be shortened. 
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