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Modeling and Analysis in Software Engineering



Problem

• Hybrid Modeling is generally tied to older platforms.

• Not supported by modern tools and technologies
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Language Server Protocol
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Obtained from: “Language Server Extension Guide”, October 6, 2022, code.visualstudio.com/api/language-extensions/language-server-extension-guide

https://code.visualstudio.com/api/language-extensions/language-server-extension-guide


Language Server
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GLSP (Graphical Language Server Protocol)

• Essentially LSP but made with graphical languages in mind
• Framework for both Servers and Clients
• Compatible with any IDE capable of rendering SVG structures
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Specific Goals

• Creation of a modern, platform-agnostic Architecture for Hybrid 
Modeling Language Editors
• One facilitated by Language Servers
• Leveraging of existing community resources on language servers
• Creation of Hybrid editors for existing textual Domain-Specific 

Languages
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Hybrid Editor Behaviour (Required Definitions)
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Hybrid Editor Behaviour (Illustration)
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selfLoop

init

s1t0

t1
statemachine selfLoop

initial state init;
state s1;
transition t0

init => s1;
transition t1

s1 => s1;

<StateMachine id=“selfLoop”>
<PseudoState id=“init”/>
<State id=“s1”/>
<Transition id=“t0” 

source=“init” target=“s1”/>
<Transition id=“t1” 

source=“s1” target=“s1”/>
</StateMachine>
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Approach to Architecture Design
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Proposed Architecture
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Single-View Limitations

• Graphical languages are designed around graphical editing capabilities
• Hybrid languages may go beyond what is specifiable using a graphical 

editor
• Single-view graph representation of a language is insufficient

11



Containment
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Projection
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Static Analysis
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Find all usages of GenericInterface:

Class1 implements GenericInterface Interface2 extends GenericInterface Class3 implements GenericInterface

Class4 extends Class1 Class5 implements Class2 Class6 extends Class3

…
…

… …

… …



Multiple Graphical Views
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Top

pinger : Pinger ponger : Ponger

playing

[Structure] Top

[Behaviour] Pinger

• Visual clutter is managed by distributed 
views

• Issues with complex views are sidestepped 
by starting small and aggregating



Revised Architecture
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Conclusion

• A general architecture for hybrid modeling languages is feasible in the 
context of language servers
• Hybrid languages are not entirely analogous to purely textual and

purely graphical languages
• This architecture will ideally inform future work in further 

standardizing the implementation of such languages.
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Thank you!
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