
A General Architecture for Client-Agnostic 
Hybrid Model Editors as a Service

Liam Walsh, Juergen Dingel, Karim Jahed
October 24th, 2022
Modeling Language Engineering
@ MODELS 2022

1

Modeling and Analysis in Software Engineering



Problem

• Hybrid Modeling is generally tied to older platforms.

• Not supported by modern tools and technologies

2



Language Server Protocol

3
Obtained from: “Language Server Extension Guide”, October 6, 2022, code.visualstudio.com/api/language-extensions/language-server-extension-guide

https://code.visualstudio.com/api/language-extensions/language-server-extension-guide


Language Server

4

Language Server Language Client
LSP



GLSP (Graphical Language Server Protocol)

• Essentially LSP but made with graphical languages in mind
• Framework for both Servers and Clients
• Compatible with any IDE capable of rendering SVG structures

5

Graphical 
Language Server

Graphical 
Language Client

GLSP



Specific Goals

• Creation of a modern, platform-agnostic Architecture for Hybrid 
Modeling Language Editors
• One facilitated by Language Servers
• Leveraging of existing community resources on language servers
• Creation of Hybrid editors for existing textual Domain-Specific 

Languages

6



Hybrid Editor Behaviour (Required Definitions)

7

Textual 
View

Model (AST)

generation

Graphical 
View

serialization

updating

rendering



Hybrid Editor Behaviour (Illustration)

8

selfLoop

init

s1t0

t1
statemachine selfLoop

initial state init;
state s1;
transition t0

init => s1;
transition t1

s1 => s1;

<StateMachine id=“selfLoop”>
<PseudoState id=“init”/>
<State id=“s1”/>
<Transition id=“t0” 

source=“init” target=“s1”/>
<Transition id=“t1” 

source=“s1” target=“s1”/>
</StateMachine>

generation

serialization

updating

rendering



Approach to Architecture Design

9

Hybrid Language ClientHybrid Language Server

Textual Language 
Server

Graphical 
Language Server

Textual Language 
Client

Graphical 
Language Client

LSP

GLSP



Proposed Architecture

10



Single-View Limitations

• Graphical languages are designed around graphical editing capabilities
• Hybrid languages may go beyond what is specifiable using a graphical 

editor
• Single-view graph representation of a language is insufficient

11



Containment

12

Obj1

Obj1.Obj2

Obj1.Obj2.Obj3

Obj1.Obj2.Obj3.Obj4

Obj1.Obj2.Obj3.Obj4……



Projection

13

Top

ponger : Ponger

playing

pinger : Pinger

playing



Static Analysis

14

Find all usages of GenericInterface:

Class1 implements GenericInterface Interface2 extends GenericInterface Class3 implements GenericInterface

Class4 extends Class1 Class5 implements Class2 Class6 extends Class3

…
…

… …

… …



Multiple Graphical Views

15

Top

pinger : Pinger ponger : Ponger

playing

[Structure] Top

[Behaviour] Pinger

• Visual clutter is managed by distributed 
views

• Issues with complex views are sidestepped 
by starting small and aggregating



Revised Architecture

16



Conclusion

• A general architecture for hybrid modeling languages is feasible in the 
context of language servers
• Hybrid languages are not entirely analogous to purely textual and

purely graphical languages
• This architecture will ideally inform future work in further 

standardizing the implementation of such languages.

17



Thank you!

18


