
ENGINEERING FAMILIES OF

MODELLING LANGUAGES

A TALE OF THREE APPROACHES

MLE’22 @ MODELS, Montreal

Juan de Lara

Universidad Autónoma de Madrid (Spain)

DOMAIN-SPECIFIC

LANGUAGES

Models and modelling pervasive in software engineering

• Model-driven engineering

• Low-code development

Domain-specific modelling languages

• Targeting a specific domain and set of users

• Abstract, concrete syntax and semantics

2

DOES ONE LANGUAGE FIT ALL?

Users with different backgrounds

• Education, low-code development

Different modelling needs and expressive power

• Variants of Petri nets (w/o inhibitor, read arcs, weights, colours, etc)

Different devices and interaction modalities

• Mobile vs desktop vs digital whiteboard

• Graphical vs textual vs conversational

Different domains

• Generic language, specialized for different domains: educational

process modelling, software process modelling 3

EXAMPLE

LEARNING A FOREIGN LANGUAGE

How do we learn a foreign spoken language?

• Slowly!

• Our sentences will be wrong: syntactic errors, bad pronunciation,

lack of vocabulary

• The recipient (e.g., a teacher) adapts her “parser”, pronunciation,

speed and vocabulary to the level of knowledge of the student

The learning process occurs within a simpler language variant

As learning progresses, the variant used becomes more complex

and complete

4

EXAMPLE

LEARNING A MODELLING LANGUAGE

How do we learn a modelling language (e.g. UML)?

• We present the different primitives of the language to the student

• Examples, exercises

• The student uses an editor (e.g., Eclipse based) that:

Expects the user to be fully proficient with the syntax and

semantics of the language

Presents the user the full language “vocabulary”, even if the

user has no knowledge of it

Is unable to understand “almost correct” models, or may not

even allow to construct or persist them

Makes the “conversation” occur with a full-fledged language

version, and expects the “conversation” to be perfect

5

EXAMPLE

LEARNING A MODELLING LANGUAGE

6

What can we

do about this?

FROM LANGUAGES TO

LANGUAGE FAMILIES

7

Let’s define a

language family to

guide the learning

process!

NAÏVE APPROACHES TO

DEFINE LANGUAGE FAMILIES

Case-by-case approach (clone-and-own)

• Explicitly define each language of the family

• Exponential number of languages w.r.t. features

Class diagram with 4 features (inheritance, composition, aggregation,

interfaces) leads to 24=16 languages

• No reuse, hard to maintain

Big language with all features

• Language too complex for the user

Perhaps that’s precisely what we try to avoid with the family!

• What about alternative features?

8

THREE APPROACHES TO

LANGUAGE FAMILIES

Annotative (superimposition, negative variability)

• Design: Overlap every language variant

• Configuration: Feature model to select the elements that are present

in the language

Compositional (language modules)

• Design: Modules with language features

• Configuration: Select the modules that are present in the language

Multi-level modelling (specialise the language via instantiation)

• Design: Generic language with common primitives for all domains

• Configuration: Specialize the generic primitives for a domain

9

SUPERIMPOSITION

1
0

A FAMILY OF PETRI NET

LANGUAGES

1
1

Place

itokens: int

in

Transition

out

*
*

places
1

* trans *

1

PetriNet

Place

in

Transition
out

*
*

Token

tokens *

1

places
1

trans *
1

PetriNet

*

Place
in

Transition
out
*
*

places
1

* trans *
1

PetriNet

Token

tokens
*

1 isHierarchical inv:
(places→size() > 0 or
trans→size() > 0)

implies (in→size() +
out→size() = 0)

Place

itokens: int

in

Transition

out

1
1

places
1

trans
1

PetriNet

**

tokens as integers tokens as objects

hierarchical nets state machine nets

FEATURE MODEL

1
2

PetriNets

Tokens

Feature
diagram

Simple Object

Hierarchical

FM =  { PetriNets, Tokens, Simple, Object, Hierarchical,

Structure, StateMachine, MarkedGraph },

PetriNets  Tokens  ((Simple  Object)  (Simple  Object)) 

(Structure  (StateMachine  MarkedGraph)) 

Structure

StateMachine MarkedGraph

mandatory optional

alternative or

Legend

Model of the variability of a system

• Features + allowed feature combinations

Configuration

• Set of features satisfying the constraints imposed by the feature model

Examples

• {PetriNets, Tokens, Simple}

• {PetriNets, Tokens, Object, Structure, MarkedGraph}

150% META-MODEL

1
3

in

isMarkedGraph inv:

Transition.allInstances()

→one(in→includes(self))

and

Transition.allInstances()

→one(out→includes(self))

Place

itokens : int

PetriNet

Transition

out

places

Simple

1

* trans *

1

Token

tokens *

1

Object

Object isHierarchical inv:

(places→size() > 0 or

trans→size() > 0)

implies (in→size() +

out→size() = 0)

MarkedGraph

StateMachine

[min=1, max=1]

StateMachine

[min=1, max=1]

*

*

net net
not Hierarchical

[del]

Hierarchical

Overlap the meta-models of all language variants

Presence conditions: formulae over the features

Negative variability: remove what is not selected by a configuration

CONFIGURATION AND

DERIVATION

1
4

Place
in

Transition
out
*
*

places
1

* trans *
1

PetriNet

Token

tokens
*

1 isHierarchical inv:
(places→size() > 0 or
trans→size() > 0)

implies (in→size() +
out→size() = 0)

⟨PetriNets, Tokens, Object, Hierarchical⟩

(SOME) CHALLENGES

Identify non-consistent combinations of features

• Two variants conflict if their integrity constraints clash

• “Hierarchy and StateMachine cannot be meaningfully combined”

Instantiability properties for each language

• “no Petri net in any variant can have a negative number of tokens”

• Checking this property on a per-language basis would be

ineffective!

1
5Guerra, de Lara, Chechik, Salay: Property Satisfiability Analysis for Product Lines of

Modelling Languages. IEEE Trans. Software Eng. 48(2): 397-416 (2022)

VACUOUS FEATURE

COMBINATIONS

1
6

Place
in

Transition
out
*
*

places
1

* trans *
1

PetriNet

isHierarchical inv:
(places→size() > 0 or
trans→size() > 0)

implies (in→size() +
out→size() = 0)

Place

itokens: int

in

Transition

out

places
1

trans
1

PetriNet

**

hierarchical nets state machine nets

itokens: int +

Place
in

Transition
out

places
1

* trans *
1

PetriNet

isHierarchical inv:
(places→size() > 0 or
trans→size() > 0)

implies (in→size() +
out→size() = 0)itokens: int

hierarchical state machine nets

(the meta-model is fine, and it is instantiable, BUT…)

VACUOUS FEATURE

COMBINATIONS

1
7

pn:PetriNet

t:Transition

:trans

:net

p:Place

:places

:net

card of in = [1..1]

card of out = [1..1]
Place

in

Transition
out

places
1

* trans *
1

PetriNet

isHierarchical inv:
(places→size() > 0 or
trans→size() > 0)

implies (in→size() +
out→size() = 0)

itokens: int

Hierarchical state machine nets

We cannot exercise the features introduced by “Hierarchical”

• Transition.places and Transition.trans need to be empty

• This means, we cannot really have hierarchical transitions

• Hierachical and StateMachine cannot be meaningfuly combined

ANALYSIS VIA MODEL FINDING

1
8

TOOL SUPPORT: MERLIN

1
9

http://miso.es/tools/merlin/

Eclipse plugin,

FeatureIDE

Product lines

of transformations

More advanced

analysis via

partial

configurations

http://miso.es/tools/merlin/

SOME EXPERIMENTS

2
0

NICE BUT…

2
1

Doesn’t the 150% meta-model become a “big ugly monster”?

• We can use slicing to visualize parts of it

Is the approach really extensible?

• We still need to dive into the 150% meta-model to add a new

feature, and also change the feature model

2
2LANGUAGE MODULES

2
3

Simple link with node

failures and acks

Rich links with

communication failures
Rich links with

communication failures

and time

EXAMPLE
A DSL FAMILY FOR NETWORKING

THE APPROACH

2
4

...

extension roles

optional

mandatory

alternative

or
M

(dependency)

MM
rule_irule_irulei

M1
(extension)

MM1
rule_irule_irulej

Mn
(extension)

MMn
rule_irule_irulek

role of Mn in dependency

inclusion of MMn in MM

{C1→C3,...}{C1→C2,...}

rule extension

1

2

3

1

2

3

Language product line

Language modules

• Meta-model

• Transformation rules

Module dependencies

Module extensions

• Extension roles

• As in feature models

de Lara, Guerra, Bottoni. “Modular Language Product Lines. A Graph Transformation Approach”. Proc.

MoDELS’2022 (on Wednesday!)

LANGUAGE PRODUCT LINE

EXAMPLE

2
5

Meta-model elements are identified by name

2
6

Meta-model elements are identified by name

top module

LANGUAGE PRODUCT LINE

EXAMPLE

2
7

Meta-model elements are identified by name

top module

Cross-tree

constraints

LANGUAGE PRODUCT LINE

EXAMPLE

USING THE PRODUCT LINE:

CONFIGURATIONS

2
8

A set of modules such that

• All top modules are selected

• If a module is selected, then the configuration needs selecting:

1. all mandatory extension modules

2. exactly one alternative extension modules

3. at least one OR extension module

4. its dependency

• The cross-tree constraints evaluate to true

CONFIGURATIONS

EXAMPLE

2
9

Some configurations:

CONFIGURATIONS

EXAMPLE

3
0

Some configurations:

• {Networking, SimpleLink}

CONFIGURATIONS

EXAMPLE

3
1

Some configurations:

• {Networking, SimpleLink}

• {Networking, SimpleLink, NodeFailures, Ack}

CONFIGURATIONS

EXAMPLE

3
2

Some configurations:

• {Networking, SimpleLink}

• {Networking, SimpleLink, NodeFailures, Ack}

• {Networking, RichLink, CommFailures}

CONFIGURATIONS

EXAMPLE

3
3

Some configurations:

• {Networking, SimpleLink}

• {Networking, SimpleLink, NodeFailures, Ack}

• {Networking, RichLink, CommFailures}

• {Networking, RichLink, CommFailures, TimeStamped, Speed}

DERIVATION:

GETTING THE META-MODEL

Given a configuration

• Merge the meta-model fragments of all modules (co-limit)

3
4

1= {Networking, SimpleLink,

NodeFailures, Ack}

MM1

NICE BUT…

Still closed variability

• How do I refine the DSL to my domain?

We need a notion of “open variability”

• Guided refinement

• Still allows defining a coherent language family

3
5

3
6

MULTI-LEVEL

MODELLING

MULTI-LEVEL

MODELLING

Use an arbitrary number

of meta-levels

Model elements have both

a type and an instance

facet

Potency to control

characteristics of

instances beyond the

next meta-level below

3
7

ProductType

vat: double

Product

price: double

type1

Book: ProductType

vat = 4.0
:type

GoF: Product

price = 35

ProductType

Book:
ProductType

GoF: Book

vat@1: double
price: double

vat=4.0

price = 35

@2

@1

@0

Standard modelling Multi-level

de Lara, Guerra, Sánchez Cuadrado: When and How to Use Multilevel Modelling. ACM

Trans. Softw. Eng. Methodol. 24(2): 12:1-12:46 (2014)

CLABJECT =

CLASS + OBJECT

Elements have a combined type and instance facet

Book

• Instance of ProductType

• Can provide a value for vat

• Type for GoF

• Can declare new features

• (We’ll see how, using the OCA)

ProductType has type facet only

GoF has instance facet only

3
8

ProductType

Book:
ProductType

GoF: Book

vat@1: double
price: double

vat=4.0

price = 35

@2

@1

@0

C. Atkinson and T. Kühne. 2001. The essence of multilevel metamodeling. UML’01 (LNCS), Vol.

2185. Springer, 19–33.

POTENCY

Used to characterize instances beyond the

next meta-level

Models, clabjects and their features have a

potency

• Natural number (or zero)

• Decreased at each lower meta-level

• Indicates at how many meta-levels the

element can be instantiated

We use the “@potency” notation

By default elements take the potency of their

containers

3
9

ProductType

Book:
ProductType

GoF: Book

vat@1: double
price: double

vat=4.0

price = 35

@2

@1

@0

C. Atkinson and T. Kühne. 2001. The essence of multilevel metamodeling. UML’01 (LNCS), Vol.

2185. Springer, 19–33.

ORTHOGONAL

CLASSIFICATION (OCA)

4
0

L
in

g
u
is

ti
c
 m

e
ta

-m
o
d
e
l

(m
e
ta

-m
o
d
e
lli

n
g
 f

a
c
ili

ti
te

s
)

…

Meta-meta-model

(meta-modelling facilitites)

Meta-model

Model

MM

M

MM

M

M’

«instance of» (onto)

«instance of» (onto)

«
in

s
ta

n
c
e
 o

f»

(l
in

g
)

«
in

s
ta

n
c
e
 o

f»

(l
in

g
)

«
in

s
ta

n
c
e
 o

f»

(l
in

g
)

«instance of»

«instance of»

• Dual typing (ontological, linguistic)

• Make meta-modelling facilities

available at every meta-level

• Types and meta-modelling

facilities only at the meta-model

level

Multi-level Two-Level (eg., EMF)

C. Atkinson, T. Kühne. 2002. Rearchitecting the UML infrastructure. ACM Trans. Model. Comput.

Simul. 12, 4 (2002), 290–321.

4
1

ORTHOGONAL

CLASSIFICATION (OCA)

Clabject
*supers

InstanceType

potency: int

vat@1: double

price: double

ProductType

vat = 4.0

Book:

ProductType

@1

price = 35

GoF: Book

@0

type

*

*

@2

ont

instanceOf

Linguistic meta-model

(very simplified)

*

Feature

«
lin

g
.
in

s
ta

n
c
e
O

f»

ont

instanceOf

Model

*

0..1

4
2

LINGUISTIC VIEW

Clabject
*supers

InstanceType

potency: int

type

*

*

Linguistic meta-model

(very simplified)

*

Feature

«
lin

g
.
in

s
ta

n
c
e
O

f»

Model

*

L2: Model

vat: Feature

potency=2

ProductType: Clabject

potency=2

potency=1

price: Feature

potency=2

L1: Model

potency=1

:type

Book: Clabject

potency=1

price1: Feature

potency=1

vat: Feature

potency=0

:type

:type

L0: Model

potency=0

GoF: Clabject

potency=0

price0: Feature

potency=0

:type

:type

:type :type

0..1

de Lara, Guerra. 2010. Deep meta-modelling with

metaDepth. In TOOLS’10 (LNCS), Vol. 6141.

Springer, 1–20. 4
3

LINGUISTIC

EXTENSIONS

Elements with no ontological type

• Ontological typing is optional

• Linguistic typing is mandatory

New clabjects or features

Not everything can be anticipated

at the top-most level

Author
Book:

ProductType

GoF: Book

vat@1: double
price: double

price = 35
numPages = 395

@2

@1

@0

vat=4.0
numPages : int

ProductType

name: String

books

*

eg: Author

name=“Gamma”

:books

eg: Author

name=“Johnson”

:books

DOMAIN SPECIFIC PROCESS

MODELLING

4
4

TaskKind Resource

Kind

Performer

Kind
Artefact

Kind

GatewayKind

Seq Join Fork

ins outs*

src

tar perfBy

*

*

*

*

name@1: String

initial:Boolean=false

final:Boolean=false

timeStamp:Date

duration:double

DSPM@2

DOMAIN SPECIFIC PROCESS

MODELLING

4
5

DSPM@2

Attend :TaskKind

name=“attend classes”

Study :TaskKind

name=“study”

Preparation:TaskKind

name=“preparation”

P2P:Seq

Exam :TaskKind

name=“do exam”
S2E:Seq

Subject

name: String

level: int

subs

1

on

1

src

tar

src tar

TaskKind Resource

Kind

Performer

Kind
Artefact

Kind

GatewayKind

Seq Join Fork

ins outs*

src

tar perfBy

*

*

*

*

name@1: String

initial:Boolean=false

final:Boolean=false

timeStamp:Date

duration:double

Edu-PML@1

de Lara, Guerra, Sánchez Cuadrado. Model-driven engineering with domain-specific meta-

modelling languages. Software and System Modeling 14(1): 429-459 (2015)

4
6

DSPM@2

Attend :TaskKind

name=“attend classes”

Study :TaskKind

name=“study”

Preparation:TaskKind

name=“preparation”

P2P:Seq

Exam :TaskKind

name=“do exam”
S2E:Seq

Subject

name: String

level: int

subs

1

on

1

src

tar

src tar

TaskKind Resource

Kind

Performer

Kind
Artefact

Kind

GatewayKind

Seq Join Fork

ins outs*

src

tar perfBy

*

*

*

*

name@1: String

initial:Boolean=false

final:Boolean=false

timeStamp:Date

duration:double

Maths: Subject

name: “Maths”

level: 1

: Attend : Study : Exam:P2P :S2E

initial=true

timeStamp=1/07/12

duration=2

timeStamp=08/07/12

duration=2

final=true

timeStamp=10/07/12

duration=1

Edu-PML@1

Proc@0

DOMAIN SPECIFIC PROCESS

MODELLING

4
7

TaskKind Resource

Kind

Performer

Kind
Artefact

Kind

GatewayKind

Seq Join Fork

ins outs*

src

tar perfBy

*

*

*

*

name@1: String

initial:Boolean=false

final:Boolean=false

timeStamp:Date

duration:double

DSPM@2

DOMAIN SPECIFIC PROCESS

MODELLING

4
8

DSPM@2

TaskKind Resource

Kind

Performer

Kind
Artefact

Kind

GatewayKind

Seq Join Fork

ins outs*

src

tar perfBy

*

*

*

*

name@1: String

initial:Boolean=false

final:Boolean=false

timeStamp:Date

duration:double

Soft-PML@1

Coding: TaskKind
tests: next

1..*
Testing: TaskKind

name=“testing”

SoftwareEngineer:

PerformerKind

actor: perfBy

@1SETask: TaskKind
*

Programmer:

PerformerKind

Tester:

PerformerKind

skills: String[*]
name=“se-task”

ADVANTAGES

The top level can be customized for the process domain

• Family of DSLs for process modelling

Transformations can be defined over the top level and reused

across the whole family

• Code generators

• Model-to-model transformations

• In-place transformations

• Queries

4
9

Textual multi-level modelling tool with a REPL

• Started in 2009

• Deep characterization based on clabjects/potency

• Orthogonal Classification Architecture

• http://metaDepth.org

Integrated with the Epsilon Languages for model management

• Constraints in EOL/EVL

• Derived attributes in EOL

• In-place transformations in EOL

• Model-to-model transformations in ETL

• Code generation in EGL

5
0

de Lara, Guerra: Deep Meta-modelling with MetaDepth. TOOLS (48) 2010: 1-20

http://metadepth.org/

5
1

DISCUSSION AND

OPEN LINES

5
2

ANNOTATIVE

APPROACH

Not modular

Large 150MMs may become difficult to understand (visualization

mechanisms) (*)

Requires two artefacts (150MM + Feature model)

PCs permit flexible reuse of elements across variants

• f1  f2 on a single element would require two modules

Good for analysis via model finding
(*) Mahmood, W., Strüber, D., Anjorin, A. et al. “Effects of variability in models: a family of experiments”.

Empir Software Eng 27, 72 (2022)

COMPOSITIONAL

APPROACH

Extensible

Language features described modularly

Modules provide both structure and behaviour

Modules could be reused in different LPLs

Large families may lead to fragmentation difficult to understand

Behaviour definition needs to merge the meta-models

• And some analysis too 5
3

MULTI-LEVEL

MODELLING

Open variability

• Refinement

Domain-specific meta-modelling

Interoperability: requires specific technology 5
4

Generic

Process

Language +

Services

Domains

Models

Process Modelling

Educational Process Modelling Software Process Modelling

«conforms to» «conforms to»

«conforms to»
«conforms to»

MULTI-LEVEL

MODELLING

Open variability

• Refinement

Domain-specific meta-modelling

Interoperability: requires specific technology 5
5

Generic

Arcade

Language +

Services

Game

Types

Games

at run time

Arcade Games

PACMAN Gauntlet«conforms to» «conforms to»

«conforms to» «conforms to»

CAN WE COMBINE…?

Compositional + annotative

• Compositional for family language design

• Annotative for analysis

Multi-level + annotative

• Configurable language, which can be refined (*)

Multi-level + Compositional

5
6(*) de Lara, Guerra. “Language Family Engineering with Product Lines of Multi-level Models”. Formal

Aspects Comput. 33(6): 1173-1208 (2021)

OPEN LINES

Techniques

• Analysis

• Concrete syntax

• Combination open + closed

Applications for

• Education (akin to gradual programming languages*)

• Low-code development to support citizen developers with wide range

of skills

5
7

(*) https://www.hedycode.com/

https://www.hedycode.com/

THANKS!
Juan.deLara@uam.es
@miso_uam

Thanks to my co-authors: Marsha Chechik, Esther Guerra, Rick Salay, Jesús

Sánchez Cuadrado

